


Reg No.: \_\_\_\_\_

Name: \_\_\_\_\_

**APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY**  
 B.Tech Degree S1 (R,S) Examination December 2025 (2024 Scheme)



**Course Code: GZPHT121**

**Course Name: PHYSICS FOR PHYSICAL SCIENCE / LIFE SCIENCE**

Max. Marks: 60

Duration: 2 hours 30 minutes

**PART A**

*(Answer all questions. Each question carries 3 marks)*

|   |                                                                                                              |   |     |
|---|--------------------------------------------------------------------------------------------------------------|---|-----|
| 1 | What are the characteristics of Laser?                                                                       | 1 | (3) |
| 2 | Write any six advantages of fiber optic communication system over the conventional wire transmission system. | 1 | (3) |
| 3 | What are the conditions that should be satisfied to obtain sustained interference fringes?                   | 2 | (3) |
| 4 | Define resolving power and dispersive power of a grating.                                                    | 2 | (3) |
| 5 | Explain the probability interpretation of wavefunction. Write the normalization condition.                   | 3 | (3) |
| 6 | Explain the phenomenon of quantum mechanical tunneling with any two examples.                                | 3 | (3) |
| 7 | List two differences between longitudinal and transverse waves. Give an example for each.                    | 4 | (3) |
| 8 | What is SONAR?                                                                                               | 4 | (3) |

**PART B**

*(Answer any one full question from each module, each full question carries 9 marks)*

**Module -1**

|    |                                                                                                                                          |   |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 9  | a) Explain the construction and working of CO <sub>2</sub> laser.                                                                        | 1 | 7 |
|    | b) Define Metastable state                                                                                                               | 1 | 2 |
| 10 | a) Define numerical aperture of an optical fibre. With a neat diagram derive an expression for numerical aperture of a step index fibre. | 1 | 6 |
|    | b) Calculate Numerical aperture of a fiber having core refractive index 1.52 and cladding refractive index 1.41.                         | 1 | 3 |

**Module -2**

|    |                                                                                                                                                                                                                |   |   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 11 | a) Explain the experimental setup of air wedge with neat diagram, derive the expression for band width of interference pattern formed by air wedge.                                                            | 2 | 6 |
|    | b) Light of wavelength $6000 \text{ \AA}$ falls normally on a thin wedge-shaped film of refractive index 1.4 forming fringes that are 2 mm apart. Find the angle of the wedge in radians?                      | 2 | 3 |
| 12 | a) Define Grating element and derive the expression for Grating equation with diagram.                                                                                                                         | 2 | 6 |
|    | b) A parallel beam of monochromatic light is allowed to incident normally on a grating having 4250 lines/cm and the second order maximum is formed at $30^\circ$ . Calculate the wavelength of the light used. | 2 | 3 |

**Module -3**

|    |                                                                                                                                                                        |   |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 13 | a) Derive time dependent Schrodinger wave equation.                                                                                                                    | 3 | 6 |
|    | b) Find the de-Broglie wavelength of neutron of energy 15 MeV. Given mass of the neutron $1.675 \times 10^{-27} \text{ kg}$ and $h=6.625 \times 10^{-34} \text{ Js}$ . | 3 | 3 |
| 14 | a) State Heisenberg's uncertainty relations and explain absence of electron in the nucleus.                                                                            | 3 | 6 |
|    | b) The life time of an excited state is $10^{-8} \text{ s}$ . Determine uncertainty in the frequency of light emitted by an atom.                                      | 3 | 3 |

**Module -4**

|    |                                                                                                                                                                         |   |   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 15 | a) Derive the expression for fundamental frequency of transverse vibrations in a stretched string.                                                                      | 4 | 6 |
|    | b) State three laws of transverse vibrations in a stretched string.                                                                                                     | 4 | 3 |
| 16 | a) Explain any three factors affecting acoustics of a building and give their remedies.                                                                                 | 4 | 6 |
|    | b) An auditorium has a volume of $10000 \text{ m}^3$ and is designed to have a reverberation time of 1.4 second. What should be the total absorption in the auditorium? | 4 | 3 |

\*\*\*