

Reg No.: _____

Name: _____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY
 B.Tech Degree S2 (S) Examination January 2026 (2024 Scheme)

Course Code: GZEST204

**Course Name: BASIC ELECTRICAL AND ELECTRONICS
ENGINEERING**

Max. Marks: 60

Duration: 2 hours 30 minutes

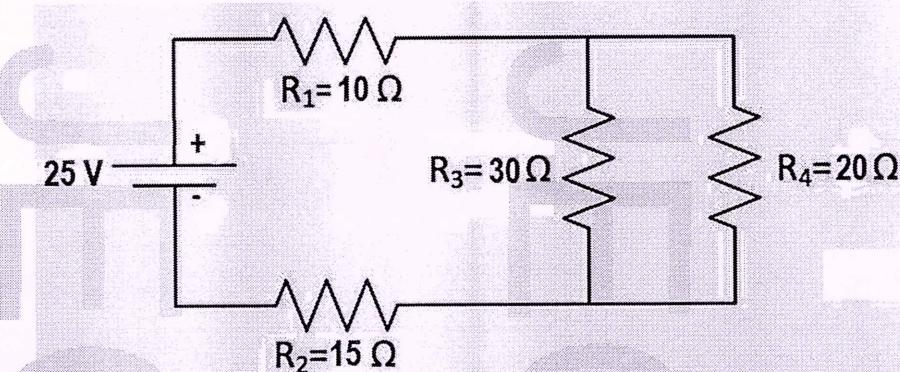
- Use separate answer sheets for Part 1 and Part 2
- No separate minimum marks are required to pass.

PART 1

ELECTRICAL ENGINEERING (30 Marks)

**PART 1-A
Module (1 & 2)**

Answer all questions. Each question carries 3 marks


		CO	Mar ks
1	State and explain Faraday's laws of electromagnetic induction.	CO1	3
2	Prove that the power consumed is zero in a purely inductive circuit when an alternating sinusoidal voltage is applied.	CO1	3
3	Explain the need for earthing in electrical installations.	CO2	3
4	Illustrate the power stages in a DC motor using a neat block diagram.	CO3	3

**PART 1-B
Module (1&2)**

Answer any one full question from each module. Each question carries 9 marks

Module 1

5 a) Determine the current drawn from the 25V source by the circuit shown CO1 5 below. Hence, determine the currents through resistors R_3 and R_4 .

b) Define active power, reactive power, apparent power and power factor of CO1 4 an ac circuit.

6 a) Derive the relationship between phase and line values for voltages and CO1 5 currents in a 3-phase Delta connected system.

b) A resistor of 5Ω , an inductor of 0.2 H and a capacitor of $100\text{ }\mu\text{F}$ are CO1 4 connected in series across a 230 V , 50 Hz , single-phase ac supply.
Determine i) Inductive and capacitive reactances ii) Impedance iii) Current drawn from the supply and iv) Power factor of the circuit

Module 2

7 a) With a neat sketch, describe the working of a Solar Photovoltaic system. CO2 5

b) Explain the working principle of a Transformer. CO2 4

8 a) Draw a neat schematic diagram of a Nuclear power plant and explain its CO2 5 operation.

b) With a neat sketch, explain the working of RCCB. CO2 4

**

PART 2:
ELECTRONICS ENGINEERING (30 Marks)

PART 2-A
Module (3 & 4)

Answer all questions. Each question carries 3 marks

		CO	Marks
1	Draw AND gate and OR gate using NAND gates only, show its truth tables are same.	CO 4	3
2	Explain any three types of fixed capacitors.	CO 4	3
3	Explain the working of capacitive sensor	CO 5	3
4	Draw architecture of IOT	CO 6	3

PART 2-B
Module (3 & 4)

Answer any one full question from each module. Each question carries 9 marks

Module 3

5	a) Explain the working of a transistor as an amplifier	CO 4	5
	b) Explain the VI characteristics of a PN junction diode and describe its behavior in forward bias and reverse bias.	CO 4	4
6	a) Explain the working of Bridge Rectifier with neat diagrams.	CO 4	5
	b) Explain the working of a simple zener voltage regulator.	CO 4	4

Module 4

7	a) Explain the working of Thermocouple.	CO 5	5
	b) Explain the working principal of proximity sensor and discuss one application of it.	CO 5	4
8	a) Explain how IOT is used in the implementation of smart street lighting and smart parking systems, and discuss the benefits of these applications in a smart city.	CO 6	9
