

Reg No.: _____

Name: _____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (S,FE) Examination January 2026 (2019 Scheme)

Course Code: MRT202
Course Name: THERMODYNAMICS
(Permitted to use Steam Tables and Mollier charts)

Max. Marks: 100

Duration: 3 Hours

PART A*(Answer all questions; each question carries 3 marks)*

Marks

1	What are the three conditions for thermodynamic equilibrium?	3
2	What you mean by an extensive property. Give an example	3
3	Give the comparison between work and heat.	3
4	Explain work done in the case of free expansion with a suitable example.	3
5	Discuss the concept of the principle of increase in entropy	3
6	Derive the relationship between COP of refrigerator and COP of heat pump.	3
7	What you meant by dryness fraction.	3
8	Write and explain the Van der Waals Equation of state.	3
9	Define Gibbs function and state their significance	3
10	Explain Kay's rule of real gas mixtures	3

PART B*(Answer one full question from each module, each question carries 14 marks)***Module -1**

11	a) Explain the concept of continuum	7
	b) The temperature (T) on a thermometric scale is defined in terms of a property K by the relation $T = a \ln K + b$, where a and b are constants. The values of K are found to be 1.8 and 6.5 at the ice point and the steam point, the temperatures of which are assigned the numbers 0 and 100 respectively. Determine the temperature corresponding to a reading of K equal to 2.8 on the thermometer.	7
12	a) Differentiate point function and path function with suitable examples	7
	b) Explain the Zeroth law of thermodynamics and discuss the temperature	7

measurement method used before 1954.

Module -2

13 a) A piston-cylinder device with air at an initial temperature of 30°C undergoes 7 an expansion process for which pressure and volume are related as given below:

P(kPa)	100	37.9	14.4
V (m ³)	0.1	0.2	0.4

Calculate the work done by the system.

b) State first law of thermodynamics for closed system undergoing a change of 7 state and show that energy a property of system.

14 a) Derive the Steady Flow Energy Equation (SFEE) applied to a Turbine 7

b) In a steady flow apparatus, 125 kJ of work is done by each kg of fluid. The 7 specific volume of fluid, pressure, and velocity at inlet are $0.35 \text{ m}^3/\text{kg}$, 600 kPa and 15 m/s. The inlet is 32 m above floor and discharge pipe is at floor level. The discharge conditions are $0.60 \text{ m}^3/\text{kg}$, 100 kPa and 275 m/s. The total heat loss between inlet and discharge is 10 kJ/kg. In flowing through this apparatus, what will be the change in specific internal energy?

Module -3

15 a) A cyclic heat engine operates between a source temperature of 900°C and a 7 sink temperature of 40°C . What is the least rate of heat rejection per kW net-work output of the engine?

b) 1 kg of water at 273 K is brought into contact with a heat reservoir at 373 K. 7 When the water has reached 373 K, find the entropy change of the water of the heat reservoir and of the universe.

16 A) Derive the Clausius inequality equation and write the criterion for reversible 7 cycle, irreversible cycle and impossible cycle

b) Derive the expression for the entropy change for a closed system. 7

Module -4

17 a) Explain the P-v diagram of pure substance that contract during freezing. 7 Explain the concept of triple point and write down the pressure, temperature and specific volume corresponds to triple point of water.

b) Steam initially at 0.3 MPa, 250°C is cooled at constant volume. (i) At what 7

temperature will steam become saturated vapour? (ii) What is the dryness fraction at 80°C? (iii) What is the heat transferred per kg of steam in cooling from 250°C to 80°C.

18 a) Explain and discuss the significance of Virial equations of state. 7
b) What are the reasons for deviation of real gas behaviour from ideal gas behaviour? Discuss the need for compressibility factor and compressibility chart 7

Module -5

19 a) The ratio of specific heats (γ) for acetylene (C_2H_2) is found to be 1.26. Find c_p and c_v for acetylene. 7
b) Derive the expressions for the equivalent molecular weight and characteristic gas constant for an ideal gas mixture. 7

20 a) Derive the Tds Equations using Maxwell relations and explain its significance 7
b) Derive Clapeyron Equation for evaporation of liquids. Explain the significance of Clapeyron Equation using p-T diagram. 7
