0100MAT101052405

Reg No.:	Name: $\frac{1}{12} \left(\frac{3}{3} \right)$	de
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	2
	B.Tech S1 (S,FE) S2 (S,FE) Degree Examination December 2025 (2019 Scheme)	KINDLYUG
	CHER	muis
	Course Code: MAT101	01110
	Course Name: LINEAR ALGEBRA AND CALCULUS (2019 -Scheme)	
Max. M	Iarks: 100 Duration: 3	Hours
	PART A	Marks
1	Answer all questions, each carries 3 marks [1 1 1 6]	(3)
	Find the rank of the matrix $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 2 & -3 & -4 \\ -1 & -4 & 9 & 18 \end{bmatrix}$ by reducing to echelon form.	
2	If one eigenvalue of the matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is 5, find the other eigenvalues	(3)
	without finding the characteristic equation. $\begin{bmatrix} 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ is 5, find the other eigenvalues	
3	생활하다 하는 사람이 가장 아니는 아이를 하면 하면 하지만 하는 것이 되었다. 그는 사람들은 사람들이 되었다고 있다.	(2)
3	If $f(x, y) = x^3y + e^{xy^2}$, find $\frac{\partial^2 f}{\partial x \partial y}$.	(3)
4	Find the critical points of the function $f(x, y) = 2xy - x^3 - y^2$.	(3)
5	Evaluate $\int_0^1 \int_0^1 \frac{dx dy}{\sqrt{(1-x^2)(1-y^2)}}$.	(3)
6	Find the area of the region enclosed by $y = x^2$ and $y = x$.	(3)
7	Determine whether the series $\sum_{k=0}^{\infty} \frac{5}{4^k}$ converges. If so, find the sum.	(3)
8	Test the convergence of $\sum_{k=1}^{\infty} \frac{99^k}{k!}$.	(3)
9	Determine the Taylor series expansion of $f(x) = \sin x$ at $x = \frac{\pi}{4}$.	(3)
10	Express $f(x) = x$ as a half range sine series in $0 < x < 2$.	(3)
	PART B	
	Answer one full question from each module, each question carries 14 marks.	
	MODULE 1	
11 a	Solve the following system of equations using Gauss elimination method.	(7)
	2x + y - z = 4	
	x-y+2z=-2	
	x-2y+z=-2.	
Ъ	Find the eigenvalues and eigenvectors of $\begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1 \end{bmatrix}$.	(7)
12 a	Test for consistency and solve	(7)

0100MAT101052405

$$2x + z = 3$$
$$x - y - z = 1$$
$$3x - y = 4$$

b Diagonalize $\begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$. (7)

MODULE 2

- 13 a Let f be a differentiable function of three variables and suppose that $w = f(x y, y z, z x), \text{ show that } \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0.$ (7)
 - b Let $f(x, y) = x^2y$. The local linear approximation L to f at a point P is L(x, y) = 4y 4x + 8. Determine the point P. (7)
- 14 a The length, width and height of a rectangular box are measured with an error of at most 5%. Use a total differential to estimate the maximum percentage error that results if these quantities are used to calculate the diagonal of the box.
 - b Find the absolute extrema of the function f(x, y) = xy 4x on R where R is the triangular region with vertices (0,0), (0,4) and (4,0).

MODULE 3

- 15 a By reversing the order of integration, evaluate $\int_0^2 \int_{\frac{y}{2}}^1 e^{x^2} dx dy$. (7)
 - Use triple integral to find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes z = 0 and y + z = 3. (7)
- 16 a Evaluate the double integral $\int_0^1 \int_0^{\sqrt{1-y^2}} \cos(x^2 + y^2) dxdy$ by converting to polar coordinates. (7)
 - Evaluate $\iiint_G xyzdV$ where G is the solid in the first octant bounded by the parabolic cylinder $z = 3 x^2$ and the planes z = 0, y = x and y = 0.

MODULE 4

- 17 a Test the convergence of the series $\frac{1}{1,2,3} + \frac{3}{2,3,4} + \frac{5}{3,4,5} + \cdots$. (7)
 - b Examine the convergence of (i) $\sum_{k=1}^{\infty} \frac{k!10^k}{3^k}$ (ii) $\sum_{k=1}^{\infty} \frac{1}{2k^2-1}$. (4+3)
- 18 a Determine whether the series $\sum_{k=1}^{\infty} (-1)^k \frac{k^4}{4^k}$ is absolutely convergent. (7)
 - Examine the convergence of $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k+1}{4k+1}$. (7)

MODULE 5

- 19 a Find the Fourier series for $f(x) = \begin{cases} x, & 0 \le x \le \pi \\ 2\pi - x, & \pi < x \le 2\pi \end{cases}$ (7)
 - Obtain the half range cosine series of f(x) = x in the interval $0 \le x \le \pi$. Hence b show that $1 + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.
- If f(x) = |x|, expand f(x) as a Fourier series in the interval (-2,2). 20 a (7)

(7)

(7)

