A

03GAMAT101122404

Pages: 3 aDUCA

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (R,S) Examination December 2025 (2024 Scheme)

Course Code: GAMAT101

Course Name: MATHEMATICS FOR INFORMATION SCIENCE-1
Max. Marks: 60
Duration: 2 hours 30 minutes

	PART A		
	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	Evaluate $\lim_{x\to 0} \frac{x}{3-\sqrt{x+9}}$.	CO1	(3)
2	A weight hanging from a spring is stretched down 5 units beyond its rest position	CO1	(3)
	and released at time $t=0$ to bob up and down. Its position at any later time t is		
	s = 5 cost. What are its velocity and acceleration at time t?		
3	Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for $u = tan^{-1}(\frac{x}{y})$	CO2	(3)
4	If $z = x^2y$, $x = t^2$, $y = t^3$, find $\frac{dz}{dt}$ using chain rule.	CO2	(3)
5	Prove that $\nabla(fg) = f\nabla g + g\nabla f$	CO3	(3)
6	Find the directions in which the function $f(x, y) = x^2 + xy + y^2$ increases and	CO3	(3)
	decreases rapidly at $(-1,1)$.		
7	Find the local extreme values of $f(x, y) = 49 - x^2 - y^2$ on the line	CO4	(3)
	x + 3y = 10 using Lagrange's multiplier method.		
8	Explain the general form of LPP	CO4	(3)

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

- 9 a) Find the equation of tangent line and normal line to the curve $x^3 + y^3 9xy = 0$ at (2,4). CO1 (5)
 - b) Check the continuity of the function $f(x) = \begin{cases} 3x + 2, & x \le 1 \\ x^2 + 1, & x > 1 \end{cases}$ at x = 1.

03GAMAT101122404

- c) Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$.
- 10 a) Find the derivative of the function $f(x) = 4 x^2$ using limit definition of CO1 (4) derivative. Hence find f'(-3) and f'(1).
 - b) Find the inflection points of $f(x) = x^3 3x + 1$ and the intervals on which it is CO1 (5) concave up and concave down.

Module -2

- 11 a) Find and sketch the level curves f(x, y) = c where f(x, y) = x + y CO2 (3) 1; c = -3, 0.
 - b) If $f(x,y) = x \cos y + y e^x$ find $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x \partial y}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$ CO2 (6)
- 12 a) Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ in terms of r and θ , where $w = 4 e^x \ln y, \qquad x = \ln(r\cos\theta) \quad and \quad y = r\sin\theta.$
 - b) Show that the function $f(x,y) = \frac{xy^3}{x^2 + y^6}$ has no limit as $(x,y) \to (0,0)$ CO2 (3)

Module -3

- 13 a) Let f be a differentiable function of 3 variables and suppose that w = CO3 (5) $f(x-y,y-z,z-x). \text{ Show that } \frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0.$
 - b) Find the local extreme values of $f(x, y) = 3y^2 2y^3 3x^2 + 6xy$. CO3 (4)
- 14 a) Find the directional derivative at (1, -1) of $g(x, y) = \frac{x y}{xy + 2}$ in the direction of $\vec{v} = 12\vec{i} + 5\vec{j}$.
 - b) Find the absolute extrema of $f(x,y) = 2x^2 4x + y^2 4y + 1$ on the closed triangular plane bounded by the lines x = 0, y = 2, y = 2x in the CO3 (5) first quadrant.

Module -4

a) A firm manufacturers two types of products P_1 and P_2 and sells them on a profit of Rs 3 on type P_1 and Rs 4 on type P_2 . Each product is processed on two machines A & B. Type P_1 requires 2 minutes of processing time on A and 1 minute on B; type P_2 requires 3 minutes on A and 2 minutes on B. The machine A is available for not more than 450 minutes while machine B is

03GAMAT101122404

available for 720 minutes during any working day. Formulate the problem as on LPP.

- b) Find the extreme values of $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + y + z = 1, and x y = 0.
- 16 a) Minimise the quadratic function $f(x, y) = 3x^2 + 4y^2$ starting from the point $(x_0, y_0) = (1,1)$ using the method of steepest descent with a fixed step CO4 (4) size $\alpha = 0.01$. Iterate 3 steps
 - b) Solve the LPP

 Minimize Z=5x+3yCO4 (5)

 Subject to $2x+y \ge 10$, $x+3y \ge 15$,

 $x \le 10,$
 $y \le 8,$
 $x, y \ge 0$

**