0800ECT203122002

Pages: 3

Marks

(3)

		3	F	C SIA	(F)
Reg No.:	Name:	11 *	1 4	To Solv	1
	ADI ARDIH KALAM TECHNOLOGICAL UNIVERSITY	11.	2/	A COUNTY OF	/

B.Tech Degree S3 (S,FE) (FT/WP) / S1 (PT) Examination November/December 2025 (2019 Scheme)

Course Code: ECT203 Course Name: LOGIC CIRCUIT DESIGN

Max. Marks: 100	Duration: 3 Hours
PART A	

Answer all questions. Each question carries 3 marks

- 1 Perform the following Conversions
 - (i) Binary number 10011101 to gray code(ii) Binary number 10110011 to Octal
 - (iii) BCD number 10011100 to Excess-3 code
- With the help of an example, differentiate the working of following Verilog

 (3)

 HDL keywords. (a) Monitor (b) display
- 3 State De-Morgan's theorem and obtain the complement of the function F₁= X'YZ+XY'Z' using De-Morgan's theorem. (3)
- 4 Obtain the truth table of the following function. (3) F = (A+B)(A'+B+C)(A+B'+C)
- A test bench is designed to test a Verilog description of a full subtractor with X, Y, Z as its inputs and D&B as its outputs. Draw the timing diagram that will be produced by the simulator for the following stimulus.

initial begin X = 0; Y = 0; Z = 1;

$$X = 0$$
, $Y = 0$, $Z = 1$,
#2 $X = 0$; $Y = 1$; $Z = 0$;

#4
$$X = 0$$
; $Y = 1$; $Z = 1$;

#3

end

- 6 Construct a 2-bit full subtractor using half subtractors. Use minimum hardware. (3)
- 7 What is excitation table of a flip flop? Give the excitation table of SR flip flop. (3)
- 8 Show the construction of JK flip-flop from D-flip-flop. (3)
- 9 Draw the circuit of a CMOS inverter and identify the components and terminals. (3)
- 10 Explain the terms "setup time" & "hold time" of a digital integrated circuit. (3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

- a. Generate Hamming code with odd parity for the 8-bit data word (8) "11010101".
 - b. With the help of suitable examples, explain the data types used in Verilog HDL.
- a. Given the two octal numbers A= (56)₈ and B= (160)₈. Obtain (Y)₈=A-B using 1's complement & 2's complement.
 - b. Explain the following codes with suitable examples.
 i BCD code ii Excess 3 code iii Parity check codes
 iv ASCII Code

Module 2

- a. Draw the logic diagram of a 2-input XOR gate using NOR gate and (8) implement it using Verilog code. Use gate-level modeling.
 - b. Convert each of the following into the other canonical form:

i.
$$F(x, y, z) = \sum m(1, 2, 4, 5)$$
 (6)

ii.
$$F(A, B, C, D) = \prod M(3,5,8,10)$$

iii.
$$F(p,q,r,s) = \sum m(0,3,7,10,12)$$

iv.
$$F(A, B, C) = \prod M(0,1,4,6,)$$

a. Draw the logic diagram corresponding to the following Boolean (10) expressions without simplifying them.

i.
$$(A + C)(C + D')(A' + B + D)$$

ii.
$$(AC + A'B')(BD' + C'D)$$

iii.
$$A + CD + (A + D')(C' + D)$$

iv.
$$AB' + AD + AC'D$$

b. Obtain the simplified Boolean expression from the following Boolean function using K-map (4)

$$F(a,b,c) = \sum m(1,3,4,6)$$

Module 3

- 15 a. Design a 1-bit comparator, which tests only the following condition Y = (8) $A \ge B$, where A & B are one-bit inputs and Y is one-bit output.
 - b. Construct a 4-bit BCD adder using 4-bit parallel adders and logic gates. (6)

0800ECT203122002

(Mark the inputs and outputs properly.)

a. Implement the following logic function using 8:1 and 4:1 multiplexers. (8)

 $G(a,b,c) = \sum m(0,3,5,6)$

b. Write a Verilog code for implementing a 4-bit binary to Gray-code encoder. (6)

Module 4

- Using positive edge triggering JK flip flops, design a synchronous counter (14) which counts in the following sequence: 000, 111, 110, 101, 100, 011, 010, 001, 000......
- a. Design a Mod-9 asynchronous counter using JK flip flops. (9)
 - b. Derive the characteristic equation of SR flip flop (5)

Module 5

- a. With the help of a circuit diagram, explain the working of a CMOS (8) NAND gate.
 - b. Compare the Characteristics of TTL & CMOS digital logic families. (6)
- a. Explain the working of TTL inverter with the help of a circuit diagram. (8)
 - b. Following are the specifications of a TTL gate: V_{CC}=5V, I_{CCH}=20mA, I_{CCL}=40mA, t_{PHL}=3ns, t_{PLH}=3ns, V_{OH}=2.7V, V_{OL}=0.5V, V_{IH}=2V, (6) V_{IL}=0.8V. Calculate the average propagation delay and noise margin of

the TTL gate.