\mathbf{C}

Reg No.:_

0800CST203122002

Name: Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE) (FT/WP) / S1 (PT) Examination November/December 2025 (2019 Scheme)

Course Code: CST203

	Course Name: Logic System Design	
Max. Marks: 100 Durati		3 Hours
	PART A	
	Answer all questions. Each question carries 3 marks	Marks
1	Subtract the following decimal numbers by the 9's complement method.	(3)
	i) 574.6 – 279.7 ii) 435 – 645	
2	What are error detecting codes? How we detect errors in codes?	(3)
3	Find complement of the given functions.	(3)
	i) ABEF +ABE'F' +A'B'EF ii) AB' +BC' +AC iii) A'.(B+C') +(A'B'C)	
4	Express the following function as sum of min terms and product of max terms: i) $F(A,B,C) = A' + B + CA$ ii) $F(A,B,C) = B(A'+B'+C')(A+B')$	(3)
5	Implement the logic function $A \odot B$, using $4x1 \text{ MUX}$.	(3)
6	Derive the simplified Boolean output functions of a full subtractor.	(3)
7	Differentiate between edge triggered and level triggered flip flops.	(3)
8	Give the excitation table of T flip flop.	(3)
9	Explain the working of serial in parallel out shift register.	(3)
10	Write short notes on PLA.	(3)
	PART B	
Ai	nswer any one full question from each module. Each question carries 14 marks Module 1	
11.(a)	Perform the following conversions using suitable steps.	(8)
	i) (61.3125) ₁₀ to binary ii) (242.257) ₈ to hexadecimal	
	iii) (110101.101010) ₂ to octal iv) (4A01) ₁₆ to binary	
(b)	Describe the different schemes for representing negative numbers with proper	(6)
	examples.	(0)
12.(a)	Convert the decimal numbers 534 and 281 into BCD and do the addition and	(8)
	subtraction operation in BCD arithmetic.	
(b)	Perform the following arithmetic operations:	(6)

ii) (F9AC)₁₆ – (D4C7)₁₆

i) (164.57)₈ + (537.1)₈

iii) 46 – 14 using 2's complement method.

0800CST203122002

Module 2

	Wodule 2		
13.(a)	Simplify the Boolean function $F(A, B, C, D)=\Sigma m(1,3,5,8,9,11,15) + d(2,13)$ using Quine-McCluskey method.	(10)	
(b)	Implement the given function $F = (A+B').C. (B+C)$ i) using OR, AND logic gates ii) using only NOR gates	(4)	
14.(a)	Minimise the following functions by K-map method and realize using minimum	(10)	
	number of gates		
	i) $F1=\Sigma m(0,1,2,3,11,12,14,15)$ ii) $F2=\pi M(1,4,6,9,10,11,14,15)$.		
(b)	Reduce the following Boolean expression to minimum number of literals	(4)	
	i) AB + (AC)' + AB'C(AB+C) ii) ((X'Y' +Z))' + Z+ XY + WZ	(4)	
Module 3			
15.a)	Design and implement a 2-bit magnitude comparator using 4 X 16 decoder.	(7)	
(b)	With the help of a logic diagram explain 3-bit BCD to binary code converter.	(7)	
16.(a)	How can the principle of look- ahead carry reduce the carry propagation time		
	in a binary parallel adder? Derive the Boolean functions for the carry outputs	(9)	
(b)	at different stages of a look-ahead carry generator. Design and implement full adder by using only NAND gates.	(5)	
	Module 4		
17.(a)	Explain race around condition in JK flip-flop. Explain how a master slave flip flop avoids race around condition.	(7)	
(b)	Design a counter that goes through states 0, 3,5,6,0	(7)	
18.(a)	What is a BCD ripple counter? Explain its operation by means of logic and timing diagram.	(9)	
(b)	How a D-flip flop can be converted to J-K flip-flop?	(5)	
Module 5			
19.(a)	Give the IEEE Single precision format for floating point number representation with explanation. Determine the floating-point binary number represented by the following single precision floating point representation. "0100 0011 0101 0100 0000 0000 0000 00	(8)	
(b)	Implement a 4- bit bidirectional shift register with parallel load.	(6)	
20.(a)	Draw a flow chart and explain the addition/ subtraction of signed 2's complement representation.	(7)	
(b)	Explain the working of 4-bit Johnson counter with a timing diagram.	(7)	
