Pages:

Reg No.: Name: Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (R) (FT/WP) Examination November 2025 (2024 Scheme).

Course Code: PCCST303

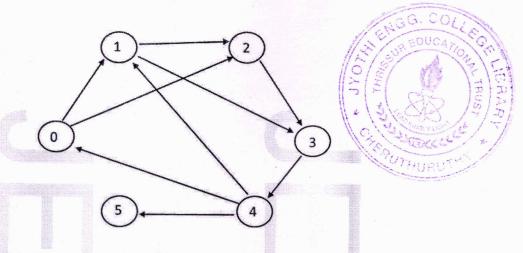
Course Name: DATA STRUCTURES AND ALGORITHMS

Max. Marks: 60

Duration: 2 hours 30 minutes

PART A

	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	Compute the time complexity of the following code fragment.	CO1	(3)
	for(i=0;i <n;i++)< td=""><td></td><td></td></n;i++)<>		
	for(j=n;j>0;j=j/2)		
	<pre>printf("DATA STRUCTURE");</pre>		
2	Write algorithm for push and pop operations of a stack using array.	CO1	(3)
3	What is self-referential structure? Give an example.	CO2	(3)
4	Write algorithm to find the largest element in a singly linked list.	CO2	(3)
5	Compare Min-heap and Max-heap with example.	CO3	(3)
6	Construct an expression tree for (A+B*C)-D-E*F-(G-H/I).	CO3	(3)
7	Perform radix sort to sort the numbers 34, 21, 3, 121, 342, 65 and 44	CO4	(3)
8	Write algorithm to sort an array using insertion sort.	CO4	(3)


PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

06PCCST303112503

9	a)	Describe different notations to be used to express time complexity of an	CO1	6
		algorithm.		
	b)	Write algorithm for various insertion operations of a double ended queue	CO1	3
		using array.		
10	_	C_{-} the infin expression $(A+D*C/D)$ (F.F/C) to postfix form using a	CO1	6
10	a)	Convert the infix expression (A+B*C/D)-(E-F/G) to postfix form using a stack. Evaluate the resultant postfix expression by replacing A,B,C,D,E,F	COI	Ü
		and G with 3,2,4,2,5,8 and 4.		
	b)	Write algorithm to find transpose of given sparse matrix.	CO1	3
		Module -2		
11	a)	Write algorithm for add two polynomials(single variable) using linked list.	CO2	5
	b)	Write algorithm for insert node at the beginning and end of a circular singly	CO2	4
		linked list.		
12	a)	Consider the requests from processes in given order 300K, 25K, 125K, and	CO2	6
		50K. Let there be two blocks of memory available of size 150K followed		
		by a block size 350K. Which of the memory allocation schemes can satisfy		
		the above requests? Justify your answer.		
	b)	Write algorithm to display elements in a doubly linked list in reverse order.	CO2	3
		Module -3		
13	a)	Create a binary search tree using the following values 35,12, 47, 36, 52, 30	CO3	6
		,25 and 49. Delete from this tree the nodes 30 and 47(delete 47 using inorder		
		successor).		
	b)	Write algorithm for different tree traversals.	CO3	3
14	a)	Write algorithm for graph traversal using BFS. Perform BFS on the given	CO3	6
		graph from source vertex 0. if multiple choices may be available for the next		
		node choose in ascending order.		

b) Explain the following terms with examples:

CO3

3

- i) Full binary tree
- ii) Complete binary tree

Module -4

- 15 a) Write algorithm to sort an array using quick sort. Apply quick-sort to sort the CO4 6 numbers 45,33,56,22,76,78,40 and 30.
 - b) Explain any three hashing functions with examples. CO4 3
- a) Given the values 72,13,6,5,10,36,43 and 17 and a hash table of size 11.show CO4 6 the resultant table after inserting values in the given order by using hash function h(k)=k%11 with each of the following collision strategies.
 - i) Linear Probing
 - ii) Quadratic Probing
 - iii) Separate Chaining
 - b) Write algorithm to search an element in a sorted array using binary search. CO4 3

