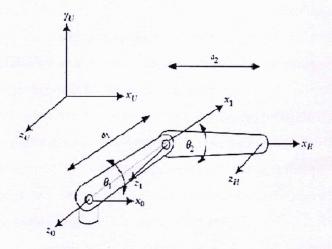

1100RAT301112402

1/6/	
Pages: 3	EDUCA
ages. Sur	- manage
12/3/	
10/2/	22 Page

Reg No.:	Name:	
	Here :	

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R,S) Examination November 2025 (2019 Scheme)


Max. Marks: 100 **Duration: 3 Hours** PART A (Answer all questions; each question carries 3 marks) Marks Outline any three considerations to be taken while choosing a gripper for an 3 application. 2 Explain degrees of freedom with an example. 3 3 Summarize any three DH parameters used in forward kinematics of manipulators. 3 Represent rotation and position in a 4 x 4 homogeneous matrix with simple example. 4 5 Distinguish between Point to Point and Continuous Path planning. 3 Explain the three costs associated with A* algorithm. 6 3 7 Explain the use of Lagrangian mechanics in dynamic modelling of robots. 3 8 Draw the schematic diagram of a robot control system. 9 Distinguish between holonomic and non-holonomic robots. 3 10 Explain the working principle of a speed sensor. 3 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 Describe with the help of neat diagrams the various joints used in robotic 10 11 a) manipulators. b) Explain the SCARA configuration robot with a diagram. 4 OR 12 a) Describe the four basic robot configurations with diagrams of structure and workspace. b) Distinguish between active and passive grippers. 4

Module -2

- 13 a) Suppose the mobile coordinate frame M is rotated about the fixed coordinate frame 7 F by π about f^3 axis and then translated by 3 units along f^2 axis. Obtain the coordinates with reference to the fixed frame of a point whose coordinates in the mobile frame are $p = [3 \ 0 \ -1 \ 1]^T$.
 - b) Explain the Tool Configuration Jacobian and the relation between joint and end 7 effector velocities

OR

14 a) Derive the forward kinematics transformation matrix for the given robotic 8 configuration.

b) Determine the inverse of the transformation matrix given below.

 $T = \begin{bmatrix} 0.5 & 0 & 0.866 & 3\\ 0.866 & 0 & -0.5 & 2\\ 0 & 1 & 0 & 5\\ 0 & 0 & 0 & 1 \end{bmatrix}$

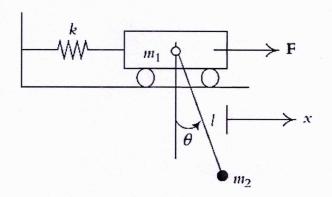
Module -3

- 15 a) The fourth joint of a robotic manipulator must move from 75⁰ to 105⁰ in 3 sec. Find 8 the coefficients of the cubic polynomial to interpolate a smooth trajectory. Also obtain the position, velocity, and acceleration profiles.
 - Explain with necessary diagrams, the significance of the trapezoidal velocity profile 6
 used in LSPB trajectory planning.

OR

16 a) Describe the potential field technique for path planning of robots in the presence of 8 obstacles.

1100RAT301112402


b) Explain how straight line and circular trajectories are planned in Cartesian space.

6

9

Module -4

17 a) Develop the dynamic model of the 2 DOF system shown in the figure below.

b) Describe Computed torque control with a neat block diagram.

5

OR

- 18 a) Explain the working of a single axis PID controller with derivation of closed loop 7 transfer function and block diagram.
 - b) Derive the expression for the residual forces acting on a robotic arm once the inertial 7 forces and gravitational forces have been removed.

Module -5

19 a) Describe any three industrial applications of robots.

6

b) Explain the working of IMU and Accelerometers.

8

OR

- 20 a) Explain repeatability, work volume, stroke and reach of robots with necessary 8 diagrams.
 - b) Describe open loop type of kinematic controller in wheeled mobile robots with a diagram.
