1100ECT301112402

Pages: 3x EDUCATION

Reg No.:____

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B. Tech Degree S5 (R, S) / S3 PT Examination November 2025 (2019 Scheme)

Course Code: ECT301

Course Name: LINEAR INTEGRATED CIRCUITS

Max. Marks: 100 Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Sketch the transfer characteristics of a dual input balanced output differential	3
	amplifier showing linear and limiting regions. Comment on the same.	
2	Define Slew Rate and CMRR. Give the typical value of slew rate & CMRR for a	3
	741C op-amp.	
3	Draw the circuit diagram of an ideal opamp integrator. Obtain an expression for	3
	output voltage. How will the integrator respond to a dc input.	
4	A person was experimenting with an inverting amplifier after designing it for a	3
	gain of 1. But during setup he accidentally interchanged connections to inverting	
	pin and non inverting pins. In such a case, plot the transfer characteristic of the	
	wrongly wired circuit.	
5	Explain Barkhausen criteria for sustained oscillations.	3
6	Design a narrow band pass filter with two feedback paths with a centre frequency	3
	of 1.5 KHz, Q=7, and pass band gain of 15.	
7	Explain how a PLL can be used as a frequency multiplier.	3
8	With the help of a diagram, explain the internal schematic of 555 IC.	3
9	Explain simple current limiting mechanism in IC 723. Mention its disadvantages.	3
10	Mention any three types of ADCs.	3
	DADE D	

PART B

(Answer one full question from each module, each question carries 14 marks)

1100ECT301112402

Module -1

- 11 a) Draw the circuit diagram of a Wilson current mirror circuit using BJT. Prove that 7 output current is same as reference current for the circuit.
 - Prove that the common mode gain of a Dual input balanced output Differential 7
 Amplifier decreases with increase in Emitter Resistance.
- 12 a) A differential amplifier has a differential gain of 80dB and CMRR of 95 dB. If V_1 = $2\mu V$ and V_2 = $1.6\mu V$, calculate the differential voltage and common mode voltage.
 - b) Derive the expression for the differential input resistance & output resistance for 7 a dual input balanced output differential amplifier using BJT.

Module -2

- 13 a) Draw the circuit diagram of a basic logarithmic amplifier using Diode. Derive an 7expression for output voltage in terms of input voltage.
 - b) Explain the working of a precision full wave rectifier using op-amp. 7
- 14 a) Explain the features of an instrumentation amplifier. Design an instrumentation 8 amplifier for a gain of 1000.
 - b) Draw the circuit diagram of a voltage to current convertor with grounded load 6 and obtain an expression for load current.

Module -3

- 15 a) Design a second order low-pass Butterworth filter having upper cut-off 7 frequency of 1 KHz. Plot its frequency response.
 - b) Design an astable multivibrator circuit using op-amp to generate a frequency of 7 1KHz.
- 16 a) Design a narrow band reject filter to eliminate 120 Hz frequency.
 - b) Draw the circuit diagram of an op-amp based RC phase shift oscillator and 7 design it for a frequency of 500 Hz.

Module -4

17 a) Design a circuit using 555 IC which will turn on a heater immediately after 7

1100ECT301112402

		pressing a push button and should make the heater in ON state for 5 seconds.			
	b)	With the help of a block diagram explain the internal schematic of VCO IC.	7		
1.8	a)	With the help of a block diagram explain the internal schematic of PLL.			
	b)	Design a 555 IC based circuit to generate an output signal with frequency of 1			
		KHz and duty cycle of 75%.			
Module -5					
19	a)	Explain the working of a low voltage regulator using LM723C IC.	(
	b)	Draw the circuit diagram of a 4-input binary weighted resistor DAC and derive	8		
		an expression for output voltage.			
20	a)	Explain how current boosting and current limit protection is implemented in a	7		
		LM723C IC.			
	b)	Explain the working of a 3-bit Flash Type ADC.	7		
