B

1100ECT303122101

Pages: 3

Reg No.:	Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R,S) (FT/WP/PT) Examination November 2025 (2019 Scheme)

Course Code: ECT 303

Course Name: DIGITAL SIGNAL PROCESSING

Max. Marks: 100

PART A

Duration: 3 Hours

	(Answer all questions; each question carries 3 marks)	Marks
1	The first five points of 8-DFT of a real valued signal	3
	$X(K) = \{1, 1+j, -1+j, 1-j, -1\}$. Find the energy of the signal?	
2	Obtain the response of an LTI system with impulse response $h(n) = \{-1, -2\}$ for	3
	an input $x(n) = \{1, 2, 3\}$ using circular convolution?	
3	Calculate the number of real multiplications and real additions involved in the	3
	calculation of 1024 point DFT using direct computation algorithm?	
4	FFT algorithm is an inplace algorithm. Justify it?	3
5	If H (z) has a zero at $z = 2e^{j\pi/4}$ determine the other zeros of lowest degree linear	3
	phase FIR filter H(z)?	
6	Describe warping effect in bilinear transformation method and how can we	3
	eliminate it?	
7	Calculate the number of multiplications, additions and delay elements required in	3
	the direct form II realization of following system.	
	y(n) = 0.5y(n-1) - 0.25y(n-2) + x(n) + x(n-1)	
8	Explain the significance of lowpass filtering prior to sampling?	3
9	Differentiate between truncation and rounding?	3
10	Give any three applications of DSP Processor.	3

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

a) Calculate the output y(n) of a filter whose impulse response is h(n) = {1, 2} and s input signal x(n) = {1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1} using overlap save method

1100ECT303122101

- b) Given two sequences $x_1(n) = \{1,-1,-2,3,-1\}$, $x_2(n) = \{1,2,3\}$; Determine a 6 sequence y(n) so that $Y(k) = X_1(k) X_2(k)$
- 12 a) Perform the circular convolution of following sequences $x(n) = \{1, 1, 1, 2\}$ 8 $y(n) = \{1, 2, 3, 2\}$ using DFT and IDFT method.
 - b) Obtain the convolution of $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and $h(n) = \{2, 4, 6\}$ using overlap add method?

Module -2

- 13 a) Obtain the 8- DFT of the sequence {1, 2, 3, 5, 6, 7} using radix-2 DIT algorithm 8
 - b) Given at g(n) = {1, 2, 1, 2} and h(n) = {1, 2, 2, 1} find the 4 point DFTs of these 6 2 sequences using a single 4 point DFT?
- 14 a) Obtain the DFT of the sequence {1, 2, 3, 4, 4, 3, 2, 1} using radix-2 DIF 8 algorithm
 - b) Draw the flow diagram of 8 point radix 2 DIT FFT algorithm 6

Module -3

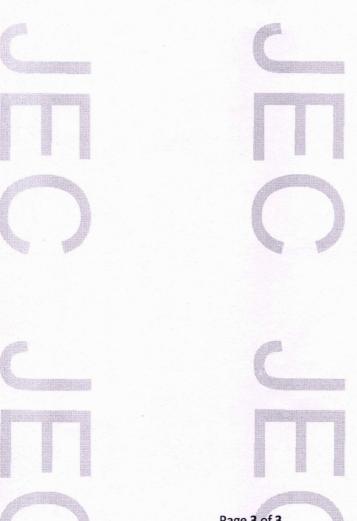
- 15 a) Design an ideal highpass filter with desired frequency response $H(e^{j\omega}) = 1 \text{ for } 0.25\pi \le |\omega| \le \pi \quad \text{and} \quad H(e^{j\omega}) = 0 \text{ for } |\omega| \le 0.25\pi.$ Find h(n) for N = 11.(use Hamming window)
 - b) Show that the zeros of linear phase FIR filter exists as reciprocals?

5

- 16 a) Design an analog Butterworth filter that has -1dB pass band attenuation at 200 Hz and at least -15dB stop band attenuation at 540 Hz. Sampling frequency = 2000 Hz. Find the cut off frequency by matching pass band criterion. Use prewarping analog frequencies for the design.
 - b) Apply impulse invariance transformation to $H(s) = \frac{2}{(s+1)(s+2)}$ with T = 1 sec and find H (z)?

Module -4

- 17 a) Realize the system given by difference equation $y(n) = -\frac{1}{4}y(n-1) + \frac{1}{8}y(n-2)$ + x(n) - 2x(n-1) + x(n-2) in cascade form and parallel form?
 - b) Obtain the direct form-II structure for the system y(n) = 2y(n-1) + 3y(n-2) + 5x(n) + 2x(n-1) + 3x(n-2)
- 18 a) Explain the steps through which we obtained direct form-II realization of 9 recursive LTI system described by difference equation.


$$y(n) = -\sum_{k=1}^{N} a_k \ y(n-k) + \sum_{k=0}^{M} b_k \ x(n-k)$$

1100ECT303122101

- b) Realize the system function using minimum number of multipliers 5 $H(z) = \frac{1}{2} + \frac{1}{3}z^{-1} + z^{-2} + \frac{1}{4}z^{-3} + z^{-4} + \frac{1}{3}z^{-5} + \frac{1}{2}z^{-6}$ Module -5
- 19 a) Draw the architecture block diagram of TMS320C67XX processor
 - b) If quantization noise has uniform distribution with zero mean, find the 6 quantization noise in ADC with step size Δ ?

8

- 20 a) Describe the possible errors arise in dsp algorithms due to the storage of filter 8 coefficients in finite length registers?
 - b) Draw the block diagram of interpolator; Explain the purpose of anti-imaging 6 filter in interpolator?

