Pages: 3

Reg	No.:_			
_	_	 	_	

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R,S) (FT/WP)(S3 PT) Examination November 2025 (2019 Scheme)

Course Code: CST305 Course Name: SYSTEM SOFTWARE

Max. Marks: 100 **Duration: 3 Hours** PART A Marks (Answer all questions; each question carries 3 marks) 1 Explain why system software must remain closely tied to the hardware 3 architecture, whereas application software does not. Provide one example each. 2 State any three differences between the addressing mechanisms of the SIC and 3 SIC/XE machines. List the basic functions performed by a two-pass assembler. 3 3 4 Briefly explain the structure and purpose of the Header, Text, and End records of 3 an object program. 5 What is program relocation? Briefly explain why relocation is required in 3 assemblers. Define a literal and a program block. How does each affect the way memory is 6 3 organized during assembly? What is relocation in loaders? Briefly explain how a relocation bit (R-bit) is used. 7 3 8 Explain automatic library search in loaders. When is it needed? 3 9 Describe keyword macro parameters. Give one example. 3 10 List any three debugging methods and state one-line description for each. 3 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 11 a) With the help of a neat block diagram, describe the architecture of the SIC 7 machine. Explain how the limited register set and instruction format influence the design of system software. Compare all the addressing modes supported by the SIC/XE architecture. For 7 each addressing mode, illustrate how the effective address is calculated using a small example.

1100CST305112501

12	a)	Explain the role of assembler directives in assembly language programming.	7
		Demonstrate how directives such as START, EQU, USE, LTORG, CSECT, and	
		END influence the organization of memory and control flow in a program.	
	b)	A modern system uses several system software components such as assembler,	7
		loader, linker, macroprocessor, text editor, debugger, and device driver. Explain	
		how these components interact during program development and execution,	
		taking a small program's lifecycle as an example.	
		Module -2	
13	a)	Write and explain a short SIC/XE program to copy 10 bytes from SRC to DEST	7
		using indexed addressing.	
	b)	Explain the algorithm of Pass 1 of a two-pass assembler and describe how the key	7
		data structures (SYMTAB, OPTAB, LITTAB) are updated during Pass 1.	
14	a)	Describe the steps involved in hand-assembling a SIC/XE instruction sequence.	7
		Illustrate how target address, opcode, and flags are computed.	
	b)	With a neat diagram, explain the overall structure of a two-pass assembler and	7
		show how input, intermediate file, and object program interact during assembly.	
		Module -3	
15	a)	Explain how control sections enable modular program linking. Illustrate with a	7
		small example showing two control sections and their external references.	
	b)	Describe the working of a one-pass assembler. What limitations of the one-pass	7
		assembler make the two-pass assembler preferable in most cases?	
16	a)	Explain how expressions are evaluated in assemblers. Discuss absolute vs.	. 7
		relative expressions with two small examples.	
	b)	With suitable diagrams, explain how program blocks are assigned addresses and	7
	- \	how their object code is reordered in the final output.	
		Module -4	
17	a)	Describe the design of an absolute loader with a neat flow diagram. Explain why	7
		absolute loaders are rarely used today.	
	b)	Explain the two-pass algorithm of a linking loader. Highlight the role of ESTAB	7
		and external references in each pass.	
18	a)	Describe the differences between linking loader, linkage editor, and dynamic	7
		linking Give suitable examples for each	

1100CST305112501

7 b) Explain how program linking works in SIC/XE using modification records. Show how external symbols are resolved using reference numbers. Module -5 7 Explain the one-pass macroprocessor algorithm. Describe how the datastructures 19 a) NAMTAB (MNT), DEFTAB (MDT), and ARGTAB (ALA) are used during macro expansion. 7 With examples, explain the machine-independent macroprocessor features: b) (i) Unique label generation (ii) Concatenation of macro parameters (iii) Conditional macro expansion 20 Draw and explain the general structure of a text editor. Describe how the editing 7 a) buffer and viewing buffer interact. b) Explain the anatomy of a device driver. Distinguish between character device 7 drivers and block device drivers with examples.