1100CST301112502

Pages: 3

Reg No.:		
110		

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R,S) (FT/WP/PT) Examination November 2025 (2019 Scheme)

Course Code: CST301

Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

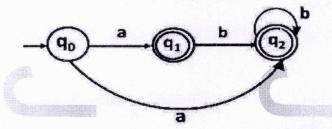
Max. Marks: 100 Duration: 3 Hours

PART A

	PART A	
	(Answer all questions; each question carries 3 marks)	Marks
	Design a DFA for set of strings of a's and b's with substring aba.	3
	Construct a regular grammar for $L = \{0^n \mid n \ge 1\}$	3
	Draw an ε -NFA for $(a^* + b^*)^*$	3
	Write regular expression for all strings of 0's and 1's not having 2 consecutive	3
	0's. Find the equivalence classes of Canonical Myhill-Nerode relation for set of all strings of a's and b's ending with a.	3
	Show that the grammar $E \rightarrow E - E \mid a \mid b$ isambiguous.	3
	Using pumping lemma, prove that $L = \{ ww \mid w \in (0+1)^* \text{ is not a CFL} \}$	3
	Design a PDA to accept equal number of a's and b's.	3
	Design a Turing machine to double a binary integer.	3
	Design a Context Sensitive Grammar for the language $L = \{a^n \ b^n \ c^n \mid n \ge 0\}$	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks) Module -1	
a)	Design a DFA for set of strings of 0's and 1's with odd number of 0's and 1's.	6
	Also write a regular grammar for the DFA.	
b)	Design a NFA for $A = \{x \in (a+b)^* \text{ second symbol from right is } 1\}$. Convert this	8
		(Answer all questions; each question carries 3 marks) Design a DFA for set of strings of a's and b's with substring aba. Construct a regular grammar for L= {0 ⁿ 1 n≥1} Draw an ε-NFA for (a* + b*)* Write regular expression for all strings of 0's and 1's not having 2 consecutive 0's. Find the equivalence classes of Canonical Myhill-Nerode relation for set of all strings of a's and b's ending with a. Show that the grammar E → E - E a b isambiguous. Using pumping lemma, prove that L = { ww w ε (0+1)* is not a CFL} Design a PDA to accept equal number of a's and b's. Design a Context Sensitive Grammar for the language L = {a ⁿ b ⁿ c ⁿ n≥ 0} PART B (Answer one full question from each module, each question carries 14 marks) Module -1 a) Design a DFA for set of strings of 0's and 1's with odd number of 0's and 1's. Also write a regular grammar for the DFA.

1100CST301112502

NFA to DFA.


- 12 a) Design a DFA that accepts binary strings starting with 1 and divisible by 5.
 - b) Convert ε -NFA to NFA. The transition table is given below.

8

States	ε	a	b
→qo	{q2}	{q1}	{q0}
q1	{q2}	q2}	{q3}
*q2	{q0}	ф	ф
q3	ф	ф	{q2}

Module -2

- 13 a) Construct an ε -NFA for (ab + b)*a* + ab
 - b) Construct the regular expression for the Finite Automata 7

14 a) Prove that $L=\{a^n | n \text{ is a perfect square}\}\$ not regular.

7

7

b) Minimize the DFA using table filling method. The transition table is shownbelow.

	T	T
States	0	1
->q0	q1	q3
q1	q2	q4
q2	q1	q4
q3	q2	q4
* q4	q4	q4

Module -3

15 a) Remove the useless symbols of the CFG given by

 $S \rightarrow AB \mid CA \quad B \rightarrow BC \mid AB \quad A \rightarrow a \quad C \rightarrow aB \mid b$

b) Convert to Greibach Normal Form(GNF)

9

5

1100CST301112502

	$S \rightarrow XA \mid BB \mid B \rightarrow b \mid SB \mid X \rightarrow b \mid A \rightarrow a$	
16	a) Convert to Chomsky Normal Form $S \rightarrow aAb \qquad A \rightarrow aB \mid bB \mid \epsilon B \rightarrow A \mid c$	8
	b) Derive the string "aabbabba" using leftmost, rightmost derivation and parse tr	ee 6
	for $S \rightarrow aB \mid bA A \rightarrow a \mid aS \mid bAA B \rightarrow b \mid bS \mid aBB$	
	Module -4	
17	a) Design a NPDA to recognize set of all palindromes over {0,1}	8
	b) Prove that CFLs are closed under Union, Concatenation and Kleene Closure.	6
18	a) Design a DPDA for L= $\{a^i b^j c^{i+j} \mid i, j \ge 1\}$. Illustrate the computation of PDA	on 8
	the string aaabbccccc.	
	b) Convert the grammar S -> 0AA, A -> 0S 1S 0 to a PDA that accepts the same	ne 6
	language by empty stack.	
	Module -5	
19	a) Compare recursive and recursively enumerable languages.	6
	b) Design a Turing machine to subtract two unary numbers. Illustrate the	8
	computation of TM on the input 3 - 2.	
20	a) Prove that TM halting problem is undecidable.	7
	b) Explain Chomsky hierarchy for formal languages. ***	7