1100CET305052501

Pages: 3.0

Reg No.:_____ Name:____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (R,S) (FT/WP) (S7 PT) Examination November 2025 (2019 Scheme).

Course Code: CET305

Course Name: GEOTECHNICAL ENGINEERING - II

Max. Marks: 100 **Duration: 3 Hours** PART A (Answer all questions; each question carries 3 marks) Marks Mention the assumptions made in Rankine's earth pressure theory. 1 3 2 Demonstrate the types of lateral earth pressure. 3 3 Explain 3 i Ultimate bearing capacity ii Safe bearing capacity 4 Explain Skempton's formula. 3 5 Explain estimation of immediate settlement. 3 6 Under what situations raft foundation is preferred. 3 7 Explain with neat sketches the various elements of a well foundation. 3 8 Explain negative skin friction. 3 9 Explain the I.S guidelines for choosing spacing of borings. 3 Point out any 6 information that can be collected during reconnaissance. 3 10 PART B (Answer one full question from each module, each question carries 14 marks) Module -1 Illustrate different types of shallow foundations. 6 11 a) A retaining wall 6 m high retains a cohesionless soil with an angle of internal b) friction 30°. The surface is level with the top of wall. The unit weight of top 3m of fill is 24 kN/m³. From 3m to 6m, the material is a cohesive soil with c= $20kN/m^2$, $\Phi = 20^\circ$. Unit weight of cohesive soil is 18 kN/m³. A uniform surcharge of 100kN/m² acts on the top of soil. Find the magnitude and application of the resultant active thrust.

12 a) A retaining wall with soft saturated clay backfill is 7m high. For the undrained 7

1100CET305052501

condition ($\Phi = 0$) of the backfill, determine

- i) Maximum depth of tensile crack
- ii) Active force before the tensile crack occurs
- iii) Active force after the occurrence of tensile crack.

 $\gamma = 16 \text{kN/m}^3$, c= 17kN/m².

b) Determine the active stress at the top and bottom of a vertical cut, 4.5m deep in 7 soil with angle of internal friction as 16°, cohesion of 19.1 kN/m² and Unit weight as 18.5 kN/m³. What could be the depth of the potential crack? Find out the maximum depth of excavation that can be left unsupported.

Module -2

- 13 a) Determine the ultimate bearing capacity of a strip footing 1.2 m wide and having 7 the depth of foundation of 1m. The water table reaches at the ground surface during rainy season. (Saturated unit weight = 19 kN/m³, c= 15 kN/m², Nc = 57.8, Nq = 41.4, N_y = 42.4).
 - b) Explain

7

- i) Local shear failure
- ii) General shear failure
- iii)Punching shear failure
- 14 a) A square footing 2 m wide is founded at a depth of 1.4 m in sand. Soil properties 7 are c=0, ϕ = 35°, γ_{sat} = 19 kN/m³ and unit weight above water table = 17.5 kN/m³.Bearing capacity factors are N_q= 41.4 and N_γ = 42.4. Determine Ultimate bearing capacity if water table is at
 - i 3.5 m below ground level
 - ii 1.4 m below ground level
 - b) Determine the allowable gross load and the net allowable load for a square 7 footing of 2m side and with a depth of foundation of 1.0 m. Use Terzaghi's theory and assume local shear failure. Take factor of safety of 3.0. The soil at site has unit weight 0f 18 kN/m³, c= 15kN/m² and angle of internal friction as 25^0 . N_c = 14.8, N_q = 5.6, N_γ = 3.2.

Module -3

15 a) Predict the causes of settlement and differential settlement.

- b) Design the plan dimensions of a trapezoidal footing to support two adjacent 7

1100CET305052501

columns at a centre to centre distance of 5m carrying loads of 1500 kN and 3000 kN (exterior). The column size is 500 mmx500 mm. Permissible soil pressure is 300 kPa.

- 16 a) Design a rectangular combined footing to support two adjacent columns (size 40 7 cm x 40 cm). The centre lines of the columns are placed on footing at a distance of 5m between them. The boundary is 0.5 m away from the centre line of column A. The column A and B carry load of 3 MN and 4 MN respectively. The allowable soil pressure is 400 kN/m².
 - and 50 cm sides respectively. Columns are 6m apart and safe bearing capacity of the soil is 400 kN/m². The bigger column carries 5000 kN and smaller 3000 kN. Design a suitable size of the footing so that it does not extend beyond the face of the columns.

Module -4

- 17 a) A group of 9 piles 10 m long is used as a foundation for a bridge pier. The piles 7 used are 30 cm diameter with c/c spacing 0.9 m. The subsoil consists of clay with $q_u = 150 \text{ kN/m}^2$. Determine the efficiency neglecting end bearing action. Given adhesion factor as 0.9.
 - b) Draw a neat sketch of IS pile load test setup. Explain the determination of safe 7 load of pile from Load-settlement plot.

7

- 18 a) Outline construction details of well foundation.
 - b) A square pile group of 16 piles penetrates through a filled up soil of 3 m depth. The pile diameter is 250 mm and pile c/c spacing is 0.75 m. The unit cohesion of material is 18 kN/m² and unit weight of soil is 15 kN/m³. Compute the negative skin friction on the group. Assume adhesion factor =1.

Module -5

a) Demonstrate auger boring and wash boring.
b) Explain I.S guidelines for choosing depth of borings.
a) Discuss about Standard Penetration Test and its corrections.
b) Describe geophysical methods of exploration.
