1100CET303122102

		X	I	1 (7)	4 11	2)
Reg No.:	Name:	7	1-1	2019	M	25
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	*	(3)	GO KINDEN UGHT	(4)	A
B.Tecl	n Degree S5 (R,S) (FT/WP/S3 PT) Examination November 2025 (20	19	Sche	me).	MY	ji

Course Code: CET303 Course Name: DESIGN OF CONCRETE STRUCTURES

Max	x. M	Duration: 3	Hours
		PART A (Answer all questions; each question carries 3 marks)	Marks
1		Explain the term 'Limit State Design'.	
2		Define characteristic strength & partial safety factor for materials. Why is partial safety factor for material high for concrete than steel?	(3)
3		What is development length? Obtain an expression for it.	(3)
4		At what circumstances doubly reinforced sections are preferred?	(3)
5		Compare one way slab and two way slab.	(3)
6		Explain the types of staircases based on its structural behaviour.	(3)
7		Compare the behaviour of tied columns with spiral column subject to axial loading.	(3)
8		Differentiate between short columns and long columns in RC construction.	(3)
9		Compare one way shear and two way shear in design of footings.	(3)
- 10		What are the objectives behind the special detailing provisions in IS 13920?	(3)
		PART B (Answer one full question from each module, each question carries 14 marks) Module -1	
11	a)	Explain under reinforced, over reinforced and balanced section in limit state design of RC structures.	(4)
	b)	A rectangular beam 250mm wide and effective depth 550 mm has 4 bars of 20mm diameter. Find the moment of resistance of the section if M20 concrete and Fe 415 grade steel are used. As per IS 456:2000 find the limiting moment of resistance also.	(10)
12	a)	Explain the necessity for specifying maximum and minimum tension steel in reinforced beams. What are their values?	(3)
	b)	Design a simply supported beam of span 6m subjected to a live load of 4 kN/m. UseM20 concrete and Fe415 steel.	(11)
		Module -2	
13	a)	Explain different modes of shear failure in beams.	(4)
	b)	A doubly reinforced rectangular RC beam 250 mm wide and 500 mm effective depth with an effective cover of 50mm is reinforced with 2-12mm diameter bars at top and $4-20$ mm bars at bottom. Estimate the ultimate moment carrying	(10)

1100CET303122102

		capacity of the section assuming M20 concrete and Fe415 steel.	
14	a)	Why design shear strength of concrete (τ_c) related to percentage tension steel (P_t) ?	(2)
	b)	Determine the ultimate moment of resistance of an isolated beam of T-shaped cross-section having a span of 6m and cross sectional dimensions are flange width of 1200mm, flange thickness of 100mm, web width of 300mm and an effective depth of 550mm, having tension reinforcement of 8 bars of 25mm diameter bars. The materials used are concrete mix of grade M20 and mild steel of grade Fe 415. Module -3	(12)
15	a)	Write short note on anchorage bond in design of RC structures.	(3)
	b)	Design and detail a simply supported slab for a room of size $3.5m \times 4.5m$ subjected to live load of 7 kN/m^2 . Use M20concrete and Fe 415 grade steel. Assume that the corners are held down. The slab is having all the four edges discontinuous.	(11)
16	a)	Draw the reinforcement pattern of a typical continuous slab.	(3)
	b)	A dog-legged staircase for a residential flat consists of 18 steps, each of 300 mm tread 180 mm rise, with an intermediate landing 1.2 m in width at the middle. The width of staircase is also 1.2 m. If the flights are of equal number of steps, design and detail a single flight. fck = 20 N/mm ² and fy = 415 N/mm2. Module -4	(11)
17	a)	Explain the design procedure of biaxially loaded columns.	(4)
	b)	Design a short rectangular column subjected to an axial load of 1000 kN and a uniaxial moment of 100 kNm. Use M25 concrete and Fe415 steel. Sketch the reinforcement details.	(10)
18	a)	What changes are to be made in design for columns with helical reinforcement?	(4)
	b)	Design a short circular column of effective length 3.3m to carry an axial load of 1200 kN. Provide helical reinforcement as transverse reinforcement. Use M25 concrete and Fe415 steel. Module -5	(10)
19	a)	What are the objectives of earthquake-resistant design of reinforced concrete	(3)
)	structures?	(-)
	b)	Design and detail an isolated rectangular footing for a column 400 mm x 600 mm to carry a load of 2000 kN. The SBC of the soil is 180 kN/m2.Use M20 concrete and Fe415 grade steel.	(11)
20	a)	At what situations a combined footing is recommended?	(3)
	b)	Design a square footing for an axially loaded column of 450 mm x 450 mm size. Load on column is 700 kN. The safe bearing capacity of soil is 170 kN/m ² . Use M20 concrete and Fe415 steel.	(11)