1000AIT401042501

Reg	g No.: Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	Spin
	B.Tech Degree S7 (R,S) Examination November 2025 (2019 Scheme)	
		"UTHURU"
	Course Code: AIT401	
	Course Name: FOUNDATIONS OF DEEP LEARNING	
Ma	x. Marks: 100 Duration:	3 Hours
	PART A	
	Answer all questions, each carries 3 marks.	Marks
1	Discuss Perceptron training rule.	(3)
2	Explain Hyperbolic Tangent Activation Function.	(3)
3	Discuss any 3 practical applications of Neural Networks.	(3)
4	Give the drawbacks of rectified linear units.	(3)
5	Point out different set of layers in Feedforward networks.	(3)
6	Describe gradient descent.	(3)
7	Explain the measures to prevent overfitting.	(3)
8	List three stages of a convolutional network.	(3)
9	Describe the methods to make an RNN deep.	(3)
10	Describe autoencoders.	(3)
	PART B	
	Answer any one full question from each module, each carries 14 marks.	
	Module I	
11	a) Explain softmax, LeakyRelu, and HardTanh activation functions.	(7)
	b) Explain types of Regression Loss Functions.	(7)
12	a) The following figures hows a multilayer feed-forward neural	(10)
	network. The initial weight and bias values of the network is	

1000AIT401042501

given in the table below. The activation function used is the sigmoid function. Let the learning rate be 0.92.

x	X	x	\mathbf{W}_1	W_1	W ₂	W ₂	W ₃	W ₃	W ₄	W ₅	b ₄	b ₅	b ₆
1	2	3	4	5	4	5	4	5	6	6			
0	1	1	0.1	0.3	-0	0.2	0.6	-0	0.2	0.2	0.	0.	0.
											3	1	1

Calculate weight and bias updation with the first training sample (X_1, X_2, X_3) with class label 1, using backpropagation algorithm.

	b)	What is Bias and Variance?	(4)
		Module II	
13	a)	Explain Vanishing Gradient and Exploding Gradient Problem.	(7)
	b)	Explain SGD with momentum. OR	(7)
14	a)	Explain different ensemble methods.	(7)
	b)	Compare Dropout with Early Stopping. Module III	(7)
15	a)	Illustrate the practical use cases of CNN by discussing the workflow of a specific application.	(10)
	b)	Construct a convolutional network to demonstrate the effect of zero padding on network size.	(4)

Page 2of 3

16 a) Distinguish between MaxPooling and AveragePooling with suitable

OR

1000AIT401042501

diagram. b) Explain the architecture of pretrained CNN Models. (8) Module IV 17 a) Explain types of RNN. (6)b) Distinguish between Bi-directional RNN and LSTM. (8) OR 18 a) Explain Gated Recurrent Unit. (10)b) Explain BERT. (4) Module V 19 a) Explain types of GAN. (10)b) Give examples of GAN. (4) OR 20 a) How does a restricted Boltzman machine work. (9) b) Explain the architecture of Deep Belief Networks. (5) ****