(9)

В	1000ECT443122304 Pages:	BUCA >
Reg No.	: Name:	W. W.
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	Sal
	B.Tech Degree S7 (R,S) Examination November 2025 (2019 Scheme)	LYLIGHT
	TRUTH	CKEC THY
		HU.
	Course Code: ECT443	
Max.	Course Name: INSTRUMENTATION Marks: 100 Duration: 3	Hours
	PART A	*
	Answer all questions, each carries 3 marks.	Marks
1	Differentiate between deflection type and NULL type instruments.	(3)
2	Explain absolute error and percentage error related to a measuring instrument.	(3)
3	Explain the principle of operation of capacitive transducers.	(3)
4	Explain any two applications of a LVDT.	(3)
5	Describe the basic block diagram of a wave analyser.	(3)
6	Recall any three applications of a DSO.	(3)
7	List any three applications of Supervisory Control and Data Acquisition system	(3)
	(SCADA).	
8	Explain the terms Rails and Rungs in a PLC.	(3)
9	Design a PLC ladder network to implement an AND gate and an XOR gate .	(3)
10	Explain the latching principle in PLC.	(3)
	PART B	
	Answer any one full question from each module, each carries 14 marks.	
	Module I	
11 a)	Explain with a neat block schematic the functional elements of a measuring	(9)

instrument. b) Explain the various dynamic characteristics of a measuring instrument. (5) OR 12 a) Explain the following static characteristics of a measuring instrument:

1000ECT443122304

		i)Accuracy	ii) Linearity	iii) Resolution	
		iv) Sensitivity	v)Repeatability	vi) Reproducibility	
	b)	Explain about po	otentiometer type res	istive transducer.	(5)
			Mo	dule II	
13	a)	Derive the expres	ssion for finding the	gauge factor of a strain gauge.	(9)
	b)	Describe the working principle of a linear variable differential transformer.			
				OR	
14	a)	Explain about the	e principle and worki	ng of Hall effect Transducer.	(8)
	b)	Explain the follo	wing		(6)
		i) Active an	nd passive transducer		
		ii) Primary	and secondary transd	ucer.	
			Mo	dule III	
15	a)	Describe with a	block schematic the	working of a digital frequency meter.	(10)
	b)	Explain the conc	ept of grounding and	shielding.	(4)
				OR	
16	a)	Explain the work	ing of a Spectrum an	alyser.	(10)
	b)	Explain about Go	eneral Purpose Interfa	ace Bus (GPIB).	(4)
			Mo	dule IV	
17	a)	Explain with a p	roper block diagram,	the architecture of a PLC.	(10)
	b)	Compare PLC ar	nd SCADA.		(4)
				OR	
18	a)	With a neat sketc	h explain the archited	eture of DCS (Distributed control system).	(10)
	b)	List and explain	the advantages of S	upervisory Control And Data Acquisition	(4)
		System.			
			Mo	dule V	
19	a)	Design and descr	ibe a PLC ladder log	ic to realize the following Boolean	(9)
		expressions			
		i) Y = [(A+B)(C+D)]+[CA+	B]	

1000ECT443122304

- ii) Y=[A+B+C][D+E+F]
- iii) Y = (A+B)(C+D)
- b) Explain with the support of a ladder diagram, any two arithmetic functions that (5) can be executed by using a programmable logic controller.

OR

- 20 a) Design a ladder logic to control the motors in the following section. The conditions are as follows:
 - i.) Motor 1 should be turned ON, after 5 seconds the main switch has been switched ON.
 - ii.) Motor 2 should be turned ON for 10 seconds after Motor 1 is turned ON.
 - iii.) Motor 3 should be turned ON after Motor 2 is turned OFF.
 - b) Design a PLC ladder program to implement the arithmetic function Y=mX+C. (4)
