0800CST201122006

Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY.

B.Tech Degree S3 (S,FE) (FT/WP) (S1 PT) Examination May 2025 (201) Schem

Course Code: CST201

Course Name: DATA STRUCTURES

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	Define Big O notation.	(3)
2	Compute the time complexity of the following code using frequency count	t
	method. for($i=1$; $i \le n$; $i++$)	
	{ for $(j=1;j<=i;j++)$	(3)
	k=k+1; }	
3	What is a sparse matrix. How a sparse matrix can be represented using arrays.	(3)
4	Evaluate the following post fix expression. abc^{+d-} , where $a=5,b=4,c=3,d=7$	(3)
5	Write any two applications of list data structure.	(3)
6	What are self-referential structures? Give an example for declaring it	(3)
7	Write an algorithm for the pre order traversal in a binary tree.	(3)
8	With examples explain complete graph and connected graph	(3)
9	Derive the worst case and best case running time of insertion sort.	(3)
10	Explain any two hash functions with examples.	(3)
	PART B Answer any one full question from each module. Each question carries 14 mark Module 1	is is
11	a) Explain the various phases in the system life cycle.b) Write an algorithm to find the largest element in an array and compute the time complexity.	
12	a) What is meant by space complexity and time complexity of an algorithm? How is it measured?	
	b) Write notes on the characteristics of an algorithm.	(4)

Module 2

a) Write algorithms to implement a circular Queue using arrays. (6)
b) Write an algorithm to convert an infix expression to its equivalent postfix expression. Why an infix expression is converted to postfix expression? (8)

Dage lof?

0800CST201122006

14	a) Discuss the different ways of implementing priority queues?	(6)
	b) Write an algorithm to implement the addition of two polynomials represented	(8)
	using arrays	
	Module 3	
15	a) Write an algorithm to count the number of nodes in a singly linked list.	(7)
	b) Implement a stack using singly linked list.	(7)
16	a) Write an algorithm to insert an item in a sorted circular singly linked list.	(7)
	b) What are the commonly used memory allocation schemes explain with	
	examples. Discuss on internal and external fragmentation	(7)
	Module 4	
17	a) Insert the following elements to an empty binary search tree.	(5)
	23, 34, 11, 9, 24, 15, 36, 8, 17, 26, 33	
	b) Illustrate with an example the breadth first search in a graph. Write an	(9)
18	algorithm for the same.a) What is a binary search tree. Write an algorithm to search for an element in a	(7)
10	binary search tree.	()
	b) Draw the binary tree corresponding to the array representation.	(4)
	A B C - D - E - F	
	c) Write any two applications of graph data structure.	(3)
	Module 5	(\mathbf{J})
19	a) With an example illustrate quick sort method and write an algorithm to sort N	(10)
17		(10)
	numbers using quick sort.	
	b) Show the steps involved in sorting following numbers using merge sort.	(4)
	21, 3, 12, 15, 8, 34, 5, 27, 9, 18, 11	
20	a) Given a hash table of size 13 with starting index 0. Insert the following	(8)
	numbers to the hash table using the hash function $h_1(x)=x \mod 13$ and	
	resolve collision using double hashing with $h_2(x) = 8$ - (x mod 7)	
	19, 18, 48, 21, 54, 33, 47, 43, 38, 45	
	b) What are the characteristics of a good hash function?	(3)
	c) What is meant by primary clustering.	(3)