0800EET205122001

Reg No.:_

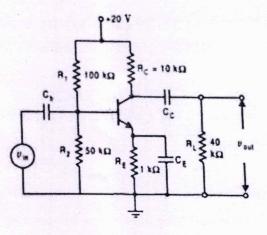
Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE) (FT/WP) (S1 PT) Examination May 2025 (2019 Scheme)

Course Code: EET205 Course Name: ANALOG ELECTRONICS

Max. Marks: 100


Duration: 3 Hours

RUTH

Pages: 3

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	List down the factors affecting the stability of operating point of a transistor.	(3)
2	Describe the role of emitter resistance in bias stabilisation.	(3)
3	Illustrate how the different internal capacitances of BJT are incorporated in	(3)
	its high frequency hybrid pi model.	
4	Define transconductance of JFET and derive its mathematical expression.	(3)
5	State and explain Barkhausen criterion for feedback oscillators.	(3)
6	Explain the terms (i)conversion efficiency and (ii) Harmonic distortion with	(3)
	respect to power amplifiers.	
7	Draw the basic block diagram of a general opamp and briefly explain the	(3)
	function of each block.	
8	Realise a difference amplifier/ subtractor circuit using opamp and deduce the	(3)
	expression for output voltage.	
9	Give the detailed pin description of comparator IC LM311 and mention its	(3)
	salient features.	
10	Explain the effect of slew rate on waveform generation.	(3)
	PART B	
An	swer any one full question from each module. Each question carries 14 marks	
	Module 1	
11(a)	Derive an expression for stability factor for voltage divider bias of a BJT	(7)
11(b)	Calculate (i) input impedance Z_{in} and (ii) voltage gain A_v of the CE BJT	(7)
	amplifier shown in Figure (1). Given the h parameters of the transistor :	
	$h_{ie} = 1500\Omega$, $h_{re} = 4x \ 10^{-4}$, $h_{fe} = 100$, $h_{oe} = 4x \ 10^{-4}$ S.	

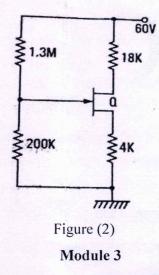
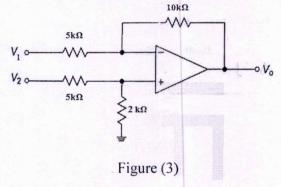


Figure (1)

- 12(a) Briefly explain Bias compensation using (i) diode and (ii) thermistors (7)
- 12(b) Derive the expressions for current gain, voltage gain, input impedance and (7) output impedance in terms of h- parameters of BJT

Module 2

- 13(a) Explain the working of ENMOSFET with the help of its characteristic (7) curves.
- 13(b) Analyse the low frequency response of CE amplifier . (7)
- 14(a) Sketch the frequency response of CE amplifier and explain why gain falls at (7) very high frequencies & very low frequencies.
- 14(b) For the circuit shown in Figure (2), FET has I_{DSS} = 4 mA and V_p = -4V. (7) Calculate I_D, V_{GS} and V_{DS}.


15(a) Explain the working of two-stage transformer coupled amplifier with circuit (7) diagram.

0800EET205122001

- 15(b) Draw the circuit diagram of Colpitt's Oscillator and explain its principle of (7) operation.
- 16(a) Compare the merits and demerits of different types of inter stage coupling in (7) amplifiers
- 16(b) Describe class A operation of power amplifiers and derive the expression for (7) conversion efficiency of transformer coupled class A power amplifier.

Module 4

- 17(a) Explain the different modes of operation of a fundamental differential (7) amplifier.
- 17(b)Define (i) CMRR and (ii) Slew rate.(7)Give the typical values of above parameters for 741 IC
- 18(a) Mention the salient features of an instrumentation amplifier. Derive the (7) expression for its output voltage.
- 18(b) Find the output voltage of the following op-amp circuit shown in Figure (3) (7)

Module 5

- 19(a) Explain the operation of op-amp integrator circuit. What practical (7) modifications are to be incorporated into the basic integrator and why?
- 19(b) Describe the operation of Schmitt trigger circuit.
- 20 With the help of internal circuit diagram of IC555 explain the operation of (14) astable multivibrator. Derive the expression for frequency of oscillation.

(7)
