D Pages: | Reg No.: | Name: | | E | |------------------------|---|--------|------| | APJ ABDUL | KALAM TECHNOLOGICAL UNIVERSIT | Y | (3) | | B.Tech Degree S3 (S,FE | E) (FT/WP) (S1 PT) Examination May 2025 (20 | 19 Sch | eme) | Course Code: ECT205 Course Name: NETWORK THEORY Max. Marks: 100 Duration: 3 Hours ## PART A Answer all questions. Each question carries 3 marks Marks - 1 Explain the concept of super mesh. (3) - 2 Find the current through 5Ω resistor by applying suitable source transformation. (3) - 3 Explain the steps for determining the Thevenin equivalent network of a network (3) having only dependent sources. - 4 State and prove maximum power transfer theorem. (3) - 5 Obtain the Laplace Transform of the following signal. (3) $$x(t) = 2t^2 - 3e^{-t}$$ - 6 Derive the time domain response of the RC circuit with pulse input. (3) - 7 Obtain the pole-zero diagram of the following function. (3) $$H(s) = \frac{s^2 + 2}{(s+3)(s^2 + s + 1)}$$ - 8 Write the necessary conditions for the driving point functions. (3) - 9 Derive the condition of symmetry in terms of short circuit admittance (3) parameters. - 10 Define characteristic impedance, image impedance and propagation constant. (3) ## PART B Answer any one full question from each module. Each question carries 14 marks ## Module 1 11 Find the current I_x using node analysis. (14) 12 (a) Determine the voltages V_x and V_y using node analysis (b) Evaluate the current I_c in the following network using mesh analysis. (6) Module 2 13 Determine the Norton equivalent network of the following network. 14 Evaluate the current through 8Ω resistor using Superposition theorem. (14) (14) (8) 15 (a) Determine the initial and final values of the transfer function given by (6) $$F(s) = \frac{3s+2}{s^3+7s^2-13s+10}$$ - (b) Derive the time domain response of an RL network for a pulse input by assuming the initial condition as zero. - 16 Evaluate i(t) in the network for $v_i(t) = e^{-t}u(t)$. Switch is closed at t = 0. (14) Assume that the initial condition is zero. ## Module 4 (14) 17 Draw the pole zero diagram of $\frac{V_0(s)}{V_i(s)}$ of the following network. 18 (a) Evaluate the magnitude and phase of the following network function from the pole-zero diagram at s = j3. $$F(s) = \frac{4s}{s^2 + 4s + 8}$$ (b) Determine all the possible transfer functions of the following network. (6) (14) 19 Determine the Z-parameters of the following network 20 Determine the hybrid parameters of the following network and check whether (14) the network is reciprocal