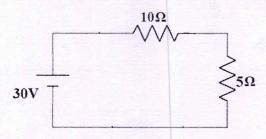
D

Pages:

| Reg No.:               | Name:                                       |        | E    |
|------------------------|---------------------------------------------|--------|------|
| APJ ABDUL              | KALAM TECHNOLOGICAL UNIVERSIT               | Y      | (3)  |
| B.Tech Degree S3 (S,FE | E) (FT/WP) (S1 PT) Examination May 2025 (20 | 19 Sch | eme) |

Course Code: ECT205
Course Name: NETWORK THEORY


Max. Marks: 100 Duration: 3 Hours

## PART A

Answer all questions. Each question carries 3 marks

Marks

- 1 Explain the concept of super mesh. (3)
- 2 Find the current through  $5\Omega$  resistor by applying suitable source transformation. (3)



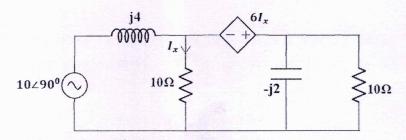
- 3 Explain the steps for determining the Thevenin equivalent network of a network (3) having only dependent sources.
- 4 State and prove maximum power transfer theorem. (3)
- 5 Obtain the Laplace Transform of the following signal. (3)

$$x(t) = 2t^2 - 3e^{-t}$$

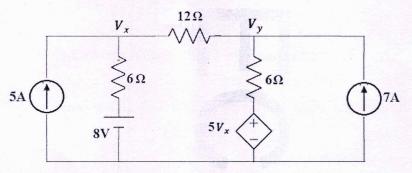
- 6 Derive the time domain response of the RC circuit with pulse input. (3)
- 7 Obtain the pole-zero diagram of the following function. (3)

$$H(s) = \frac{s^2 + 2}{(s+3)(s^2 + s + 1)}$$

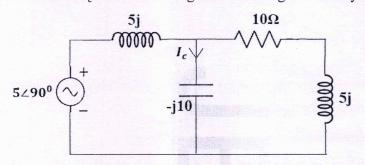
- 8 Write the necessary conditions for the driving point functions. (3)
- 9 Derive the condition of symmetry in terms of short circuit admittance (3) parameters.
- 10 Define characteristic impedance, image impedance and propagation constant. (3)


## PART B

Answer any one full question from each module. Each question carries 14 marks

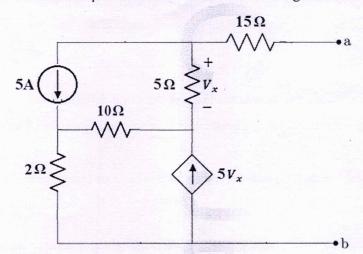

## Module 1

11 Find the current  $I_x$  using node analysis.


(14)



12 (a) Determine the voltages  $V_x$  and  $V_y$  using node analysis

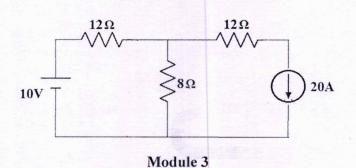



(b) Evaluate the current  $I_c$  in the following network using mesh analysis. (6)



Module 2

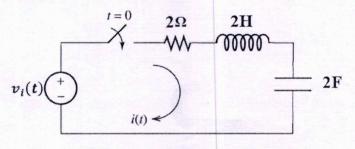
13 Determine the Norton equivalent network of the following network.




14 Evaluate the current through  $8\Omega$  resistor using Superposition theorem.

(14)

(14)


(8)



15 (a) Determine the initial and final values of the transfer function given by (6)

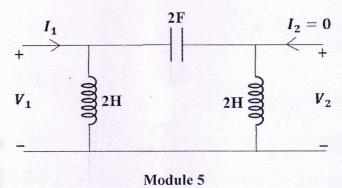
$$F(s) = \frac{3s+2}{s^3+7s^2-13s+10}$$


- (b) Derive the time domain response of an RL network for a pulse input by assuming the initial condition as zero.
- 16 Evaluate i(t) in the network for  $v_i(t) = e^{-t}u(t)$ . Switch is closed at t = 0. (14) Assume that the initial condition is zero.



## Module 4

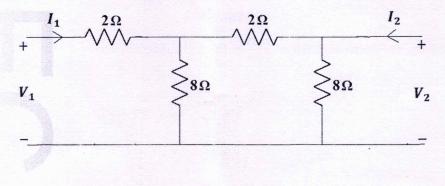
(14)


17 Draw the pole zero diagram of  $\frac{V_0(s)}{V_i(s)}$  of the following network.



18 (a) Evaluate the magnitude and phase of the following network function from the pole-zero diagram at s = j3.

$$F(s) = \frac{4s}{s^2 + 4s + 8}$$


(b) Determine all the possible transfer functions of the following network. (6)



(14)

19 Determine the Z-parameters of the following network

20 Determine the hybrid parameters of the following network and check whether (14) the network is reciprocal

