Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE) (FT/WP) (S1 PT) Examination May 2025 (2019 Scheme)

Course Code: ECT201 Course Name: SOLID STATE DEVICES

Max. Marks: 100

Duration: 3 Hours

Marks

Pages: 3

a

PART A Answer all questions. Each question carries 3 marks

- 1 Define Fermi- Dirac distribution function. Explain each term in it. Plot the (3) function at temperatures T=0 K, T_1 and T_2 ($T_1 > T_2$).
- Distinguish between intrinsic & extrinsic semiconductors. Draw the energy band (3) diagram of an n -type semiconductor under thermal equilibrium.
- 3 What are the scattering mechanisms present in a semiconductor? How do they (3) affect the mobility of the carriers as temperature is varied?
- What are the components of conduction current in a semiconductor device? Write (3) the equations of conduction current density. Plot the directions of hole & electron flux densities and current densities under thermal equilibrium.
- 5 Plot the space charge and electric field distribution within the depletion region of (3) a PN junction under equilibrium conditions.
- a) A contact is made between a metal and an n- type semiconductor with (3)
 (i) Φ_m>Φ_{sc} and (ii) Φ_m<Φ_{sc}. Draw the energy band diagrams under equilibrium and indicate the work functions, electron affinity and electron energy.
- 7 What is meant by body effect in MOSFET? How does it affect the threshold (3) voltage of the MOSFET?
- 8 Plot the drain characteristics of an n- channel D-MOSFET. Give the drain current (3) equations.
- 9 Plot the subthreshold characteristics and explain subthreshold conduction in (3) MOSFET.
- 10 Explain the principle, structure and advantage of FinFET. (3)

PART B

Answer any one full question from each module. Each question carries 14 marks

Module 1

B

Page 1of 3

0800ECT201122005

- a) Derive the equation for the electron concentration in a semiconductor under (8) thermal equilibrium.
 - b) For a semiconductor under thermal equilibrium, effective densities of states in (6) the conduction band and valence bands are given as $N_c = 10^{19} \text{cm}^{-3}$ and $N_v = 5 \times 10^{18} \text{cm}^{-3}$, Energy band gap is 2 eV. Calculate the intrinsic carrier concentration at 900K.
- 12 a) Plot the temperature dependence of carrier concentrations in extrinsic (4) semiconductors and explain.
 - b) With the help of suitable figures, explain direct & indirect recombination (4) mechanisms.
 - c) A sample of silicon is doped with $6x10^{13}$ cm⁻³ of Arsenic atoms and 10^{14} cm⁻³ (6) of Boron atoms. ($n_i = 1.5x10^{10}$ cm⁻³ for Silicon at 300 K) Find,

i. the equilibrium electron and hole concentration at 300 K.

ii. the position of fermi level in the band gap.

Module 2

- a) Derive Einstein's relation for electrons.b) Define Hall effect.
 - c) A very long n-type semiconductor bar with cross sectional area = 0.5 cm² and (6) N_d = 10¹⁷cm⁻³, is injected at one end with holes. The steady state excess hole concentration is 5x10¹⁶cm⁻³ at x=0. Calculate the hole current at x= 1000 A^o.
 (Hole mobility μ_p = 500 cm²/V Sec and hole lifetime τ_p = 10⁻¹⁰ Sec)

(5)

(3)

(7)

- 14 a) Derive the expression for diffusion current density in a semiconductor
 - b) A Ge sample is doped with $2x10^{16}$ cm⁻³ Boron atoms and 10^{16} cm⁻³ Phosphorus (7) atoms at 300 K. Find the current density, if an electric field of 3 V/cm is applied across the sample. (Mobility for electrons and holes are $\mu_n = 3800$ cm²/V Sec and $\mu_p = 1800$ cm²/V Sec respectively and intrinsic carrier concentration $n_i = 2x10^{13}$ cm⁻³ at 300 K)

Module 3

15	a) Derive the ideal diode equation.	(8)
	b) What is base width modulation? How does it affect the output characteristics	
	of a BJT?	(6)
16	a) Derive the expression for minority carrier distribution and terminal currents in	(8)

BJT.

- b) A PN junction, doped on one side with 10^{18} cm⁻³ Boron atoms and the other (6) side with 10^{16} cm⁻³ of Arsenic atoms at 300 K. (n_i = 1.5×10^{10} cm⁻³ at 300 K and ϵ_r = 11.9 for Silicon). Calculate,
 - i. The built in potential
 - ii. Width of the depletion region
- iii. Maximum electric field at the junction

Module 4

- a) With the help of necessary band diagrams, explain equilibrium, accumulation, (11) depletion and inversion modes of a MOS capacitor.
 - b) An n channel MOS transistor is made on a P type silicon substrate with N_A= (3) 5x10¹⁵cm⁻³. The oxide thickness is 100 A°. (n_i = 1.5x10¹⁰cm⁻³ at 300 K for silicon). Calculate the surface potential needed to make the surface i) Intrinsic ii) Strongly inverted.
- 18 a) Derive the expression for drain current for an n-channel MOSFET. How the (10) equation is modified in the linear and saturation regions of operations.
 - b) An nMOS transistor has W/L= 4/2, gate oxide thickness 40 A°, Mobility of (4) electrons 180 cm²/Vsec. The threshold voltage is 0.4 V, relative permittivity of gate oxide ϵ_{ox} =3.9. Calculate the drain current when

i) Vgs = 1.5 V, Vds = 1.8 V

ii) Vgs = 1.5 V, Vds = 0.3 V

Module 5

- 19 a) What is meant by scaling in MOSFETs? What is the motivation for scaling? (4)
 - b) Differentiate between the concept of constant voltage & constant field scaling. (6)
 - c) What is the impact of constant field scaling on the following parameters? (4)i) Drain current ii) Delay iii) Device density and iv) Power density
- 20 a) What is a short channel MOSFET?

- (2)
- b) Explain the following short channel effects and their influence the operation (12) of a MOSFET.
- i) Channel length modulation ii) velocity saturation iii) DIBL