Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S3 (S,FE) (FT/WP) (S1 PT) Examination May 2025 (2019 Scheme)

Course Code: MAT201

Course Name: Partial Differential Equations and Complex Analysis

Max. Marks: 100

Duration: 3 Hours

PART A

	Answer all questions. Each question carries 3 marks	Marks
1	Form the partial differential equation by eliminating arbitrary constant from the relation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.	(3)
2	Solve $py + xq - xz = 0$	(3)
3	Write any three assumptions used in the derivation of one-dimensional wave equation.	(3)
4	Find the steady state temperature distribution in a rod of 10cm having its ends	(3)
	at $20^{\circ}c$ and $40^{\circ}c$ respectively.	
5	Show that an analytic function $f(z) = u + iv$ is constant if its real part is	(3)
	constant	
6	Test the continuity of $f(z)$ at the point $z = 0$, where $f(z) = \begin{cases} \frac{z}{ z }, & z \neq 0\\ 0, & z = 0 \end{cases}$	(3)
7	Find the value of the integral $\int_C z^2 dz$ where C is the part of the unit circle from	(3)
	-i to i in the right half plane.	
8	Evaluate $\int_c \tan z dz$, where C is the circle $ z = 1$.	(3)
9	Find the Laurent series expansion of $\frac{1}{1+z}$ about z=0	(3)
10	Find the singularities and nature of singularities of the function $f(z) = \frac{1-\sin z}{z}$	(3)

PART B

Page 1of 3

Answer any one full question from each module. Each question carries 14 marks

Module 1

- 11(a) Form the partial differential equation by eliminating arbitrary function from (7) the relation $f(x^2 + y^2, z - xy) = 0$.
- (b) Solve the PDE x(y-z)p + y(z-x)q = z(x-y)

(7)

- 12(a) Using Charpit's method, solve z = pq. (7)
 - (b) Solve by Method of Separation of variable $\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u, u(x, 0) = 6e^{-3x}$.

(7)

Module 2

- 13(a) A tightly stretched string with fixed ends at x = 0 and x = l is given a shape (7) defined f(x) = λx(l-x) at t = 0, and then released. Find the displacement of the string at any distance x from one end at any time t.
- (b) Derive all possible solutions of one-dimensional heat equation.

(7)

- 14(a) Derive One Dimensional wave equation. (7)
 - (b) A homogeneous rod of heat conducting material of length 100cm has its ends kept at 0° temperature and the initial temperature is $u(x, 0) = \begin{cases} x, & \text{if } 0 \le x \le 50\\ 100 - x, & \text{if } 50 \le x \le 100 \end{cases}$ (7)

Find the temperature u(x, t) at any time t.

Module 3

15(a) Check whether $f(z) = \log z$ is analytic or not. (7) (b) Find the image of $1 \le |z| \le 2, \frac{\pi}{4} \le \theta \le \frac{\pi}{2}$ under the mapping $w = z^2$. (7)

- 16(a) Determine a so that the function $u = e^{2x} \cos ay$ is harmonic and find the (7) conjugate.
- (b) Show that if f(z) = u + iv is analytic, then it satisfies Cauchy-Riemann equation.

(7)

Module 4

17(a)	Evaluate $\int_C \frac{3z^2+z}{(z^2-9)(z-1)} dz$ where C is the circle $ z-1 = 1$.	(7)

(b) Find the Taylor series expansion of $f(z) = \cos 2z$ about $z = \pi$.

(7)

- 18(a) Evaluate $\int_C \bar{z} dz$ where C is the circle |z| = 2. (7)
 - (b) Evaluate $\int_C \frac{\sin \pi z}{(z-1)^4} dz$ where C is the circle |z+1| = 3.

(7)

Module 5 19(a) Find Laurent series expansion $f(z) = \frac{1}{(z^2 - 3z + 2)}$ valid in (7)

i. $1 \le |z| \le 2$ ii. $|z| \ge 2$ Evaluate $\int_0^{2\pi} \frac{1}{2 + \cos \theta} d\theta$

(b)

(7)

20(a) Evaluate $\oint_c \frac{z-2}{z^2-4z-5} dz$, where C is circle |z-2-i| = 4. (7) (b) Evaluate $\int_0^\infty \frac{dx}{(1+x^2)^3}$

(7)

Page 3of 3