Reg No.:

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (S) Examination May 2025 (2024 Scheme)

Course Code: GYMAT101

Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE AND **PHYSICAL SCIENCE - 1**

Max. Marks: 60

Duration: 2 hours 30 minutes

PART A

(Answer all questions. Each question carries 3 marks)

CO Mark

Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 6 & 7 \\ 2 & 3-1 & 6 \\ 3 & 5 & 5 & 13 \end{bmatrix}$ 1

CO₁ (3)

2

Find the eigen values of the matrix $A = \begin{bmatrix} 1 & 6 & -2 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$

CO₁ (3)

What are the eigen values of A^2 , A^{-1} ?

3

Show that $\{\sin x, \cos x\}$ form a basis of solutions for the ODE CO 2

(3)

y'' + y = 0

4

Find the general solution of the ODE y'' + 6y' + 9y = 0

CO₂

(3)

(3)

(3)

(3)

5

Find $L[e^{2t}\cos 3t]$

CO3

Find $L^{-1} \left[\frac{1}{s^2 - 2s - 15} \right]$

CO3

7

Obtain the Maclaurin's series expansion of $\frac{1}{1-x}$

CO₄

8

Expand e^{-x} as a Taylor's series about x = 1

CO₄ (3)

PART B

03GYMAT101122403

(Answer any one full question from each module, each question carries 9 marks)

Module -1

- 9 a) Use Gauss elimination to find the solutions of: x+y+z= CO 1 (4) 6, x-y+2z=5, 2x+y-z=1
 - b) Find the eigen values and eigen vectors of the matrix A = CO1 (5) $\begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
- 10 Diagonalize: $\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ CO 1 (9)

Module -2

- 11 a) Solve using method of undetermined coefficients: y'' y' 2y = CO 2 (4) x^2
 - b) Solve using the method of variation of parameters: y'' 2y' + y = CO 2 (5) $\frac{e^x}{x}$
- 12 a) Find a homogeneous second order ODE with the basis of solutions CO 2 (4) $e^{-x}cosx$, $e^{-x}sinx$
 - b) Solve the initial value problem y'' + 4y' 5y = 0, y(0) = CO 2 (5) 2, y'(0) = -5

Module -3

13 a) Find
$$L^{-1} \left[\frac{2s+5}{s^2-4s+13} \right]$$
 CO3 (4)

b) Use Laplace transform to solve:
$$y'' - 3y' + 2y = 4$$
, $y(0) = CO3$ (5) $2, y'(0) = 3$

14 a) Find
$$L[3u(t-2)cos(t-2)]$$
 CO3 (4)

03GYMAT101122403

b) Using Convolution theorem, find

$$L^{-1}\left[\frac{1}{s^2(s^2+a^2)}\right]$$
 CO3 (5)

Module -4

- Obtain the Half-range Fourier cosine and sine series of f(x) = CO4 (9) $xin(0,\pi)$
- Obtain the Fourier series expansion of $f(x) = x^2$ in $-\pi < x < \pi$. CO4 (9)

 Hence show that $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$
