1100RAT301122203

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech Degree S5 (S,FE) Examination May 2025 (2019 Scheme)

Course Code: RAT301 Course Name: INTRODUCTION TO ROBOTICS

Max. Marks: 100

Duration: 3 Hours

PART A

		(Answer all questions; each question carries 3 marks)	Marks
1		Distinguish between servo and non-servo control robots.	3
2		Describe with diagrams open and closed kinematic chains.	3
3		Suppose the mobile coordinate frame M is rotated about the fixed coordinate	3
		frame F by an angle $\pi/3$ about the f ¹ axis. If p is a point whose coordinates in	
		the mobile M frame are $[2, 0, 3]^{T}$. Determine the coordinates of p with respect	
		to the fixed frame F.	
4		Define the screw transformation.	3
5		Explain the advantages and disadvantages of Cartesian space planning.	3
6		What is the significance of the trapezoidal velocity profile used in LSPB	3
		trajectory planning?	
7		What is the Lagrangian function in dynamics? How is generalized force Fi	3
		acting on the ith joint computed from the Lagrangian?	
8		What are the disadvantages of the single axis PID controller?	3
9		Explain with a diagram the synchro drive in wheeled mobile robots.	3
10		Describe the kinematic constraints of a fixed standard wheel.	3
		PART B	
		(Answer one full question from each module, each question carries 14 marks)	
		Module -1	
11	a)	Explain with a diagram, the anatomy of a robotic manipulator.	6
	b)	Describe with necessary diagrams the various types of joints that can be used in	8
		a robotic manipulator.	
12	a)	Describe mechanical grippers with necessary diagrams.	6
	b)	Explain the four basic robotic configurations with neat diagrams.	8

1100RAT301122203

Module -2

7

7

- 13 a) Suppose the tool is rotated about the fixed axes starting with a yaw of $-\pi$, followed by a pitch of - $\pi/2$, and finally a roll of π . Obtain the composite rotation matrix. Suppose the point p at the tool tip has mobile coordinates $[p]^{M}$ = $[0.5, 0, 0]^{T}$. Find the coordinates of point p with respect to the fixed frame [p]^F following the yaw-pitch-roll transformation.
 - b) Calculate the inverse of the given transformation matrix:

$$T = \begin{bmatrix} 0.5 & 0 & 0.866 & 3\\ 0.866 & 0 & -0.5 & 2\\ 0 & 1 & 0 & 5\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- 14 a) Summarize the four kinematic parameters associated with the physical design 8 of the robotic arm.
 - b) Obtain the D-H Parameters of the Spherical Arm. Also, derive its forward 6 kinematic equation (Arm Equation).

Figure: Spherical Arm

Module -3

- 15 a) Describe the application of cubic polynomials to trajectory planning in joint 7 space. 7
 - b) Explain how the A* algorithm can be used in robot trajectory planning.
- 16 a) It is desired to have the fifth joint of a 6-axis robot go from an initial angle of 7

1100RAT301122203

 20^{0} to a final angle of 60^{0} in 5 seconds. Plan a third-order (cubic) polynomial for this requirement with a drawing of the displacement, velocity and acceleration profiles.

b) Explain potential field-based path planning for robots.

Module -4

7

7

- 17 a) Derive the expression for total kinetic energy of a robotic arm using the 14 manipulator velocity Jacobian matrix.
- 18 a) Derive the expression for the residual forces acting on a robotic arm once the 7 inertial forces and gravitational forces have been removed.
 - b) Derive the expression for the closed loop transfer function of a single axis PID 7 controller with necessary diagrams. What are the conditions for stability of the PID controller?

Module -5

19	a)	Describe the use of robots in any two industrial applications with the	8
		specifications required for these robots.	
	b)	Describe open loop type of kinematic controller in wheeled mobile robots.	6
20	a)	Explain the working of optical encoders with necessary diagrams.	7

b) Describe with a diagram the working of IMUs. What is its major disadvantage?

Page 3 of 3