Reg No .:_

D

Name:

TY me) Rages at DUC 47 00 P

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S,FE) Examination May 2025 (2019 Scheme)

Course Code: RAT307 Course Name: CONTROL SYSTEMS

(Provide normal graph sheets and semi-log graph sheets)

Max. Marks: 100

Duration: 3 Hours

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	Differentiate between Force voltage and Force current analogy.	3
2	What are the different types of actuators?	3
3	What does the arrangement of the Routh array indicate about system	3
	stability?	
4	The transfer function of a system is given as	3
	5	
	$S^2 + 3.2S + 64$	
	Find the damping ratio and natural frequency of oscillation.	
5	Define stability of a system based on Root locus.	3
6	Differentiate PI and PD controller.	3
7	List the properties of State Transition Matrix.	3
8	When is a system said to be controllable?	3
9	Differentiate linear and non-linear systems.	3
10	Explain the describing function analysis of non-linear systems.	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks)

Module -1

11 Determine the given transfer functions $\frac{X_1(S)}{F(S)}$ and $\frac{X_2(S)}{F(S)}$ for the system 14 shown below

12

Find the transfer function corresponding to the given signal flow graph using 14 Mason's gain formula.

Module -2

13 For a unity feedback control system, the open loop transfer function 14 $G(S) = \frac{10(S+2)}{S^2(S+1)}$

Find (a) the position, velocity, and acceleration error constants. (b) the steady error when the input is R(s), where R(s) = $\frac{3}{s} - \frac{2}{s^2} + \frac{1}{3s^3}$

- 14 a) Use Routh's stability criterion to check for the stability of the given systems. 8
 - i) $S^3 + 6S^2 + 4S + 100 = 0$
 - ii) $S^5 + S^4 + 2S^3 + 2S^2 + 15 = 0$
 - b) Find the time response a first order system, when it is fed with
 - i) unit step input

Module -3

6

15 A unity feedback system has an open loop transfer function 14

 $\frac{K}{S(S^2+4S+13)}$

Sketch the root locus.

Construct the bode plot for the given transfer function 16

 $200 \frac{(S+10)}{S(S+5)(S+20)}$

Also determine the stability.

Module -4

14

8

6

Obtain the state space representation of 17 a)

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 10y = 8u(t)$$

b) Which are the canonical forms for parallel decomposition? Using any one 6 canonical form method, generate the state model for

$$\frac{Y(S)}{U(S)} = \frac{S+3}{S^2+3S+2}$$

18 a) A linear time-invariant system is characterized by state equation

 $\begin{bmatrix} \dot{X}1\\ \dot{X}2 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1\\ X_2 \end{bmatrix}$

Compute the solution of the state equation, assuming the initial vector

 $X_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

b) Consider the state model below, check whether the system is controllable 8 and observable using Kalman's test.

$$\begin{bmatrix} \dot{X}1\\ \dot{X}2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ -2 & -1 \end{bmatrix} \begin{bmatrix} X_1\\ X_2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} U$$

$$Y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1\\ X_2 \end{bmatrix}$$

Module -5

19	Describe the Lyapunov stability theorems.	14
20	Derive the describing function of dead zone non-linearity.	14
