1100EET301122302

Reg No.:___

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S,FE) / S3 PT Examination May 2025 (2019 Scheme)

Course Code: EET 301 Course Name: POWER SYSTEMS I

Max. Marks: 100

Duration: 3 Hours

ages: 3

0

	PART A (Answer all questions; each question carries 3 marks)	Marks
1	What factors are considered while selecting the site for thermal power station?	3
2	A 100 MW power station delivers 100 MW for 2 hours, 50 MW for 6 hours and is	5 3
	shut down for the rest of each day. It is also shut down for maintenance for 45 days	5
	each year. Calculate its annual load factor.	
3	A single-phase transmission line has two parallel conductors 1.5 metres apart, the	e 3
	diameter of each conductor being 0.5 cm. Calculate line to neutral capacitance for	
	a line 80 km long.	
4	Explain generalised circuit constants of a transmission line.	3
5	An overhead line has a span of 260 m, the weight of the line conductor is 0.68 kg	g 3
	per metre run. Calculate the maximum sag in the line. The maximum allowable	;
	tension in the line is 1550 kg,	
6	What do you mean by critical disruptive voltage?	3
7	Classify different types of UG cables.	3
8	Explain significant features of a numerical relay.	3
9	Explain the term insulation co ordination	3
10	Write a brief note on the various types of electricity tariff	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11	a) A power station must meet the following load demand:	
	Load A - 50 kW between 10 A.M. and 6 P.M.	
	Load B - 30 kW between 6 P.M. and 10 P.M.	8
	Load C - 20 kW between 4 P.M. and 10 A.M.	
	Plot the daily load curve and determine (i) diversity factor (ii) units generated per	

day (iii) load factor

1100EET301122302

- b) With the help of a block diagram, explain the working of a solar power plant. 6
- 12 a) With the help of neat sketches, explain the construction and working of a 10 hydroelectric power plant.
 - b) A diesel station supplies the following loads to various consumers: Industrial consumer = 1500 kW; Commercial establishment = 750 kW Domestic power = 100 kW; Domestic light = 450 kW
 If the maximum demand on the station is 2500 kW and the number of kWh generated per year is 45 × 10⁵, determine (i) the diversity factor and (ii) annual load factor.

4

Module -2

- 13 a) Derive the expression for capacitance of a three-phase transmission line with7Symmetrical spacing
 - b) Calculate A, B, C and D constants of a 3-phase, 50 Hz transmission line 160 km 7 long having the following distributed parameters:
 R = 0.15 Ω/km; L = 1.20 × 10⁻³ H/km; C = 8 × 10⁻⁹ F/km; G = 0
- 14 a) Derive the expression for generalised circuit constants of medium transmission 8 line using Nominal π method
 - b) A single-phase transmission line has two parallel conductors 3 m apart, the radius 6 of each conductor being 1 cm. Calculate the loop inductance per km length of the line if the material of the conductor is (i) copper (ii) steel with relative permeability of 100

Module -3

- 15 a) Define string efficiency. With the help of neat sketches, derive mathematical 10 expression for string efficiency.
 - b) A single core cable 5 km long has an insulation resistance of $0.4 \text{ M}\Omega$. The core 4 diameter is 20 mm and the diameter of the cable over the insulation is 50 mm. Calculate the resistivity of the insulating material.
- 16 a) What do you mean by sag? With the help of a neat sketch, derive the expression 10 for Sag 'when supports are at equal levels'.
 - b) A 3-phase line has conductors 2 cm in diameter spaced equilaterally 1 m apart. 4 If the dielectric strength of air is 30 kV (max) per cm, find the disruptive critical voltage for the line. Take air density factor $\delta = 0.952$ and irregularity factor mo = 0.9.

Module -4

17	a)	With the help of a neat diagram explain the working of a surge diverter.	7
	b)	Draw and explain the block diagram of static relay	7
18	a)	Explain the phenomenon of arc formation. What are different arc interruption methods used?	6
	b)	With the help of a neat diagrams, explain principle of operation of	8
		i) Distance protection	
		ii) Differential Protection	
		Module -5	
19	a)	Explain the following systems of distribution:	9
		(i) Radial system	
		(ii) Ring main system	
		(iii) Interconnected system	
	b)	i) What is the significance of Electricity Tariff?	5
		ii) Write a brief note on the various types of Electricity Tariff.	
20	a)	Write short notes on the following:	6
		(<i>i</i>) Distribution transformers	
		(ii) Primary distribution	
		(iii) Secondary distribution	
	b)	i) What are the objectives for establishing an electricity market?	8
		ii) Explain the various electricity market models adopted in India.	
