Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (R,S) / S6 (PT) / (WP) Examination April 2025 (2019 Scheme)

Course Code: MET 308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50

Duration: 1Hour

·e

Pages: 5

0

viun. 1	viai KS. 2							Duration. 1110
Instru	ctions:	(1) Each question (2) Total number	cari of qu	ries one mark. No ne uestions: 50	gati	ve marks for wron	g ans	swers
		(3) All questions a answers of which only ONE i	ire to s co	o be answered. Each rrect.	que	stion will be follow	ved by	v 4 possible
		(4) If more than o	ne o	ption is chosen, it w	ill no	ot be considered fo	r valı	uation.
Ι.	A sin spee	mple U -tube manon d will give	netei 	r connected to a pipe	in w	hich liquid is flow	ing w	ith a uniform
	a)	Vacuum pressure	b)	Absolute pressure	c)	Gauge pressure	d)	Atmospheric pressure
2.	In th the c	e stability of floatin centre of gravity(G)	g bo	dies, the equilibrium	is at	tained, if the meta	centre	e (M) point
	a)	Lies above	b)	Coincides with	c)	Is parallel to	d)	Lies below
3.	A on	e-dimensional flow	is o	ne which				
	a)	Is uniform flow	b)	Is steady uniform flow	c)	Takes place in straight line	d)	Involves zero transverse component of flow
4.	The	pressure of the liqui	d flo	owing through the div	erge	nt portion of a Ver	nturin	neter
5.	a) Acco	Remains constant ording to Bernoulli's	b) eau	increases ation for steady idea	c) I flui	decreases d flow	d)	Depends upon mass of liquid
	a)	Principle of conservation of mass holds	b)	Velocity and pressure are inversely proportional	c)	Total energy is constant throughout	d)	The energy is constant along a streamline but may vary across
5.	The at the	total pressure force of Centroid, if	on a	plane area is equal to	o the	area multiplied by	the in	ntensity of pressu
	a)	The area is horizontal	b)	The area is vertical	c)	The area is inclined	d)	All of the above
				Page 1 of 5				

7.	The continuity equation is connected with										
	a)	Open channel/pipe flow	b)	Compressibility of fluids	c)	Conservation of mass	d)	Steady/unsteady flow			
8.	The lo	oss of head at exit	ofa	pipe is (where v= V	elocit	y of liquid in the p	ipe)				
	a)	v²/2g	b)	0.5v²/2g	c)	0.375v ² /2g	d)	0.75v ² /2g			
9.	The flow in which each liquid particle has a definite path and their paths do not cross each other is called										
	a)	One dimensional flow	b)	Streamline flow	c)	Steady flow	d)	Turbulent flow			
10.	The li	ne of action of the	buo	yant force acts throu	ugh th	e Centroid of the					
	a)	Submerged body	b)	Volume of the floating body	c)	Volume of the fluid vertically above the body	d)	Displaced volume of the fluid			
11	A linearly elastic and perfectly plastic material is loaded slightly above the proportional limit.										
	l his v a)	Fracture	b)	Small deformation	c)	Large deformation	d)	Cracking			
12	Carbo	n content of mild	steel	can be							
	a)	0.15%	b)	0.51%	c)	0.87%	d)	1.8%			
13	Crystallographic structure of austenite is										
	a)	BCC	b)	FCC	c)	НСР	d)	Simple cubic			
14	Amor	phous solids have	<u> </u>	structure.							
	a)	Regular	b)	Linear	c)	Irregular	d)	Dendritic			
15	What is the atomic packing factor of BCC structure?										
	a)	0.54	b)	0.68	c)	0.74	d)	0.96			
16	Which of the following is a point defect in crystals?										
	a)	Edge dislocation	b)	Interstitialcies	c)	Grain boundaries	d)	Cracks			
17	A disturbance in a region between two ideal parts of a crystal is known as										
	a)	Boundary defect	b)	Point defect	c)	Line defect	d)	Volume defect			
18	Generation of dislocations can be identified using										
	a)	Schottky mechanism	b)	Burger's vector	c)	Twist	d)	Frank-Read mechanism			
19	According to Hume-Rothery rules, for unlimited solubility difference in atomic sizes of solute										
	and st a)	10%	b)	15%	c)	20%	d)	25%			

20	Iron-Carbon phase diagram is a							
	a)	Unary phase diagram	b)	Binary phase diagram	c)	Tertiary phase diagram	d)	Ternary phase diagram
21	Heat	t and work are						
	a)	Intensive properties	b)	Extensive properties	c)	Point functions	d)	Path functions
22	The	internal energy of a	n ide	al gas is a function o	of			
	a)	Temperature and Pressure	b)	Volume and Pressure	c)	Entropy and Temperature	d)	Temperature Only
23	Whi	ch among the follow	ving	has an infinite heat c	anac	ity		
	a)	heat engine	b)	thermal energy reservoir	c)	both a. and b	d)	none of the above
24	Wha	nt is a quasi-static pr	oces	S				
	a)	a process which is random	b)	a process which is spontaneous	c)	a process which is infinitely slow	d)	a process which is stationary
25	Supe	erheated vapour beh	aves	:		510 W		
	a)	exactly as gas	b)	as steam	c)	as ordinary vapour	d)	approximately as a gas
26	The	unit of energy in S.	I. uni	its is				0
	a)	watt	b)	joule	c)	joule/s	d)	joule/m
27	Acco	ording to Gay Lussa	ic lav	v for a perfect gas, th	e abs	solute pressure of g	given	mass varies
	a)	temperature	b)	absolute temperature, if volume is kept constant	c)	volume, if temperature is kept constant	d)	remains constant, if volume and temperature are kept constant
28	According to Dalton's law, the total pressure of the mixture of gases is equal to							
	a)	greater of the partial pressures of all	b)	average of the partial pressures of all	c)	sum of the partial pressures of all	d)	sum of the partial pressures of all divided by average molecular weight
29	What is the relation between the specific heat of gas at constant pressure (C_v) and the specific heat of gas at constant pressure (C_v) at constant pressure (C_v) and the specific he							
	neat a)	or gas at constant v $(C_p) > (C_v)$	b)	$(C_p) < (C_v)$	c)	$(C_p) = (C_v)$	d)	Unpredictable

30	In an isothermal pro	cess, the	internal energy							
	a) Increases	b)	Decreases	c)	Remains constant	d)	First increases then decreases			
31	Which of the follow	ving is 'no	ot' an allowance giv	the pattern for cast	ing?					
	a) Shrinkage	b)	Draft	c)	Hole	d)	Machining			
32	The quality of the fi	nal produ	ict is not dependent							
	a) Method withdrawal pattern	of b) of	Allowance provided to the pattern	c) e	The complexity of the casting	d)	The metal used in Casting			
33	Upper half of a mol	d is know	n as							
	a) Drag	b)) Gating	c)	Соре	d)	Riser			
34	In the forging opera	tion, fulle	ering is done to							
	a) Upset the material	b)	Bend the material	c)	Draw out the material	d)	Extrude the material			
35	Hot working of met	al is carri	ed out							
	a) At the re- crystallization temperature	b)	below the re- crystallization temperature	c)	Above the re- crystallization temperature	d)	Just above the melting temperture			
36	Which of the following is also called gas welding									
	a) Oxy fuel gas welding	b)	Metallic welding	c)	Arc welding	d)	Fuel gas welding			
37	The inner cone of the flame in welding has the following nature									
38	a) Highest temperature In plasma arc weldi	b) ng the ga	Coldest temperature s is	c)	Moderate temperature	d)	Uncertain			
	a) Ionized	b)	Heated	c)	Magnetized	d)	Vaporized			
39	In a four high rolling mill, there are four rolls out of which									
	a) One is workin rolls and three are backing up rolls	ng b) e p	two are working rolls and two are backing up rolls	c)	three are working rolls and one is backing up roll	d)	All of the four are working rolls			
40	In order to get unifo	orm thick	g process, one prov	vides						
	a) Camber on the rolls	e b)	Offset on the rolls	c)	Hardening of the rolls	d)	Antifriction bearings			
41	In a kinematic chair	n a quater	nary joint is equal t							
	a) One binary jo	int b)	Two binary joint	c)	Three binary joint	d)	Four binary joint			
42	Which of the follow	ing mech	vith a four bar links	age						
	a) Double -crank mechanism	k b)	Double -rocker mechanism	c)	Crank- rocker mechanism	d)	Crank -shaper mechanism			

43	The number of inversions for a slider crank mechanism is									
	a)	6	b)	5	c)	4	d)	3		
44	Whi	ch of these is an app	proxi	mate straight line m	otion	mechanism				
	a)	Scott Russell's mechanism	b)	Hart's mechanism	c)	Peaucellier mechanism	d)	Watt's mechanism		
45	When the elements of a pair have when in motion, it is said to a lower pair									
	a)	Line or point contact	b)	Surface contact	c)	Permit relative motion	d)	None of the mentioned		
46	Cam with Knife edge follower is an example of									
	a)	Screw pair	b)	Lower pair	c)	Higher pair	d)	Spherical pair		
47	Which among the following cam follower is extensively used in an aircraft engine									
	a)	Spherical follower	b)	Roller follower	c)	Flat faced follower	d)	Knife edge follower		
48	A cam in which the follower reciprocates or oscillates in a plane parallel to the axis of the cam is known as									
	a)	Cylindrical cam	b)	Circular cam	c)	Reciprocating cam	d)	Tangent cam		
49	In shaper mechanism, the Coriolis component of acceleration will									
	a)	Not exist	b)	Exist	c)	Depends on position of crank	d)	None of the above		
50	A cosine curve depicts simple harmonic motion of a cam follower									
	a)	Normal stress diagram	b)	Acceleration diagram	c)	Velocity diagram	d)	Displacement diagram		