Reg No.:_

F

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY.

B.Tech Degree S6 (R,S) / S6 (PT) / (WP) Examination April 2025 (2019 Scheme)

Course Code: ECT 308 Course name: COMPREHENSIVE COURSE WORK

Max. Marks: 50

Duration: 1Hour

Instructions: (1) Each question carries one mark. No negative marks for wrong answers
(2) Total number of questions: 50
(3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct.
(4) If more than one option is chosen, it will not be considered for valuation.

1. The positive envelope of a single-tone amplitude modulated wave has a maximum value of 3 V and a minimum of 1V. The modulation index is

- a) 1/4 b) 1/3 c) 1/2 d) 2/3
- The fundamental period of a discrete-time signal x[n] = cos(7 n/13) is
 - a) 7 b) 13 c) 26 d) 14

3. Which of the following is not part of the Dirichilet's conditions for the convergence of Fourier series of a periodic signal x(t)?

a)	The signal x(t) must be absolutely integrable over a period.	b)	The signal x(t) must remain bounded.	c)	The signal x(t) must have finite number of maxima and minima in any finite interval	d)	The signal x(t) must have finite number of discontinuities in any finite interva
					finite interval.		

4.

2.

To a matched filter matched with

 $f(t) = \begin{cases} 1, & 0 \le t \le T \\ 0, & otherwise \end{cases}$

the same signal f(t) (with duration t=T) is applied as the input. Then the output has maximum value at time

a) t=0 b) t=T/2 c) t=T d) t=2T

5.

- The time needed for a pulse to rise from 10% to 90% of its maximum amplitude is defined as thea) Delay timeb) Rise timec) Settling timed) Propagation time
- 6.

7.

a) Excessive power b) Excessive efficiency c) Cross over d) None of these dissipation

If the ac supply is 50 Hz, what will be the ripple frequency out of the full-wave rectifier?

In a class B push-pull amplifier, the transistors are biased slightly above cutoff to avoid

	a) 50	b) 60	c)	100	d)	120				
8.	High frequency gain of	RC coupled amplifier falls d	ue to							
	a) Low R _L	b) High C _c	c)	Low input capacitance	d)	High junction capacitance				
9.	A transformer coupled class A amplifier has a maximum theoretical conversion efficiency of									
	a) 25%	b) 50%	c)	66.6%	d)	75%				
10.	Fourier transform of a deterministic signal $g(t)$ is $G(f)$. Then the Fourier transform of $g(t-2)$ is									
	a) $G(f)exp(j4\pi f)$	b) $G(f)exp(-j4\pi f)$	c)	G(2f)	d)	G(f-2)				
11	If the unit step response of a network is (1-exp(-at))u(t), then its impulse response is									
	a) a exp(-at)	b) a exp(-at) u(t)	c)	(1/a) exp(-at) u(t)	d)	(1-a) exp(-at)				
12	Which of the following	electrical characteristics is ne	ot exh	ibited by an ideal op	-amp?					
	a) Infinite voltage gain	b) Infinite bandwidth	c)	Infinite output resistance	d)	Infinite slew rate				
13	Given that CMRR is 10	0dB. Input common-mode ve	oltage	is 12 V. Differential	voltag	ge gain is 4000.				
	a) 48V	b) 0.48V	c)	20	d)	11				
14	Given that for an op-amp the gain is 103, the slew rate is 1.5V/µsec. Input is 0.005sinot, calculate									
	maximum frequency to a) 47.7 kHz	prevent distortion. b) 0.3 MHz	c)	477 Hz	d)	3 kHz				
15	The output of an op-amp is out of phase with the input connected to the inverting (-) terminal.									
	a) 0 degree	b) 90 degree	c)	180 degree	d)	270 degree				
16	If Rf = Rin, the voltage R_{f} $V_{in} \sim R_{in}$	gain Vout/Vin is								
	a) 1	b) -1	c)	10	d)	Very smalll				
17	The output voltage of a	n op-amp circuit is always	_ the	level of the power su	ipply.					
	a) Larger than	b) Smaller than	c)	Same as	d)	None of the above				
18	The voltage gain of a b	uffer amplifier is								
	a) 1	b) 0	c)	-1	d)	5				
19	Determine the output vertex $v_1 \xrightarrow{250 \text{ k}\Omega} v_2 \xrightarrow{500 \text{ k}\Omega} $	boltage for the below circuit-								
	a) $10(V_2-V_1)$	b) $-10(V_2-V_1)$	c)	$-10(V_1-V_2)$	d)	None of these				

20	Determine the output vol $V_1 \xrightarrow{33 \text{ k}\Omega} \xrightarrow{330 \text{ k}} \xrightarrow{49 \text{ V}} \xrightarrow{10 \text{ k}\Omega} \xrightarrow{10 \text{ k}\Omega} \xrightarrow{9 \text{ V}} \xrightarrow{-9 \text{ V}}$	Ω	from the circuit below —₀V _{out}	when	V1 = V2 = 0.15 V.				
	a) 0V	b)	4.65V	c)	6.45V	d)	-6.45V		
21	Calculate the overall vol $v_{is} \circ \downarrow $	ltage g	ain of the circuit if R1	= 100	$\Omega\Omega$ and R2 = 1 k Ω				
	a) 10	b)	-1	c)	11	d)	9		
22	If the feedback voltage a circuit in voltage-series	and the feedba	e output voltage are gi ick amplifier?	ven as	10 V and 4V. Find the	he gai	in of the feedback		
	a) 2.5 V	b)	40V	c)	3 V	d)	6.2V		
23	Which of the following	is done	e to convert a continue	ous tim	ne signal into discrete	time	signal?		
	a) Modulation	b)	Sampling	c)	Integration	d)	None of these		
24	The even part of a signa	l x(t) i	s?						
	a) $x(t)+x(-t)$	b)	x(t)-x(-t)	c)	$(1/2)^*(x(t)+x(-t))$	d)	$(1/2)^{*}(x(t)-x(-t))$		
25	All energy signals will have an average power of								
24	a) Zero	b)	Infinity	c)	positive	d)	Cannot be calculated		
20	x(n)*o(n-k)=					I)	(1)*5(1)		
07	a) x(n)	(0	X(K)	c)	х(к)*о(п-к)	d)	X(K)*O(K)		
27	Time scaling operation		Lissensline	÷ 、	Come l'an	I)	No. 64		
20	a) Downsampling	6)	Opsampling	C)	Sampling	a)	None of these		
28	which of the following	relatio	is are true if $x(n)$ is re		$\mathbf{X} + (\mathbf{X} + \mathbf{X} + \mathbf{X})$	1	1747 X 177 X		
20	a) $X(\omega)=X(-\omega)$	b)	$X(\omega) = -X(-\omega)$	c)	$X^*(\omega) = X(\omega)$	d)	$X^{*}(\omega) = X(-\omega)$		
29	If $X(\omega)$ is the Fourier tra	anstori	n of the signal x(n), th	ien wn	lat is the Fourier trans	storm	of the signal x(n-k)?		
20	a) $e^{\omega k}$. $X(-\omega)$	b)	$e^{j\omega k}$. $X(\omega)$	c)	$e^{-j\omega k}$. $X(-\omega)$	d)	$e^{-j\omega k}$. $X(\omega)$		
30	Any signed negative bin	ary nu	imber is recognised by	its					
	a) MSB	b)	LSB	c)	Byte	d)	Nibble		
31	The representation of octal number (532.2)8 in decimal is								
	a) 346.25	b)	532.864	c)	340.67	d)	531.668		
32	An important drawback	of bin	ary system is						

	a)	It requires very large string of 1's and 0's to represent a decimal number	b)	It requires sparingly small string of 1's and 0's to represent a decimal number	c)	It requires large string of 1's and small string of 0's to represent a decimal number	d)	It requires small string of 1's and large string of 0's to represent a decimal number				
33	Th	e largest two digit he	xade	cimal number is								
	a)	(FE) ₁₆	b)	(FD) ₁₆	c)	(FF) ₁₆	d)	(EF) ₁₆				
34	In a	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as										
	a)	D flip-flop	b)	S-R flip-flop	c)	T flip-flop	d)	S-K flip-flop				
35	Hov	How many stable states combinational circuits have?										
	a)	3	b)	2	c)	41	d)					
36	Th	The flip-flops which has not any invalid states are										
	a)	S-R, J-K, D	b)	S-R, J-K, T	c)	J-K, D, S-R	d)	J-K, D, T				
37	Wh	at is the minimum nun	nber	of flip-flops needed to	build	a MOD-17 up count	ter?					
	a)	2	b)	3	c)	4	d)	5				
38	Wh	at is the counting ran	ge of	f a BCD counter?								
	a)	0 to 10	b)	1 to 10	c)	0 to 9	d)	1 to 9				
39	A ripple counter's speed is limited by the propagation delay of											
	a)	Each flip-flop	b)	All flip-flops and gates	c)	The flip-flops only with gates	d)	Only circuit gates				
40	How many flip-flops are required to construct a decade counter?											
	a)	4	b)	8	c)	5	d)	10				
41	A cordless telephone using separate frequencies for transmission in base and portable units is known as											
42	a) VS	Duplex arrangement B modulation is pref	b) Terreo	Half duplex arrangement d in TV because	c)	either a or b	d)	neither a or b				
	a)	It reduces the bandwidth requirement to	b)	it avoids phase distortion at low frequencies	c)	it results in better reception	d)	none of the above				
43	In I out	FM signal with a mo- put of the tripler will	dula hav	tion index m_f is passe a modulation index	ed the	rough a frequency t	ripler	The wave in the				
	a)	m _f	b)	3m _f	c)	m _f /3	d)	m _f /9				
44	A 400 W carrier is amplitude modulated with $m = 0.75$. The total power in AM is											
	a)	400W	b)	512W	c)	588W	d)	650W				
45	No	n-coherently detection	on is	not possible for			,					
	a)	PSK	b)	ASK	c)	FSK	d)	Both (a) and (c)				

46	The autocorrelation function of the white noise is								
	a)	Impulse function	b)	Step function	c)	Constant	d) -	None of the above	
47	DP	CM encodes the PC	M va	llues based on					
	a)	Quantization level	b)	Difference between the current and predicted value	c)	Interval between levels	d)	None of the mentioned	
48	The	e detector that minir	nizes	the error probability	is ca	lled as			
	a)	Maximum likelihood detector	b)	Minimum likelihood detector	c)	Maximum & Minimum likelihood detector	d)	None of the mentioned	
49	Wh	at is the region on th	e outj	put characteristics bel	low I _c	$= I_{CEO}$ line called?			
	'a)	Active region	b)	Cut off region	c)	Saturation region	d)	None of these	
50	Giv volt	en that the collector age for collector cur	powe rent =	r dissipation is 300 m = 50 mA?	nW, w	that is the value of c	ollect	or to emitter	
	a)	0 v	0)	S V ***	6)	0 v	d)	2 V	