Reg No.:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S5 (S,FE) (FT) (WP/PT) Examination May 2025 (2019 Scheme

Course Code: CST 301

Course Name: FORMAL LANGUAGES AND AUTOMATA THEORY

Duration: 3 Hours Max. Marks: 100 PART A (Answer all questions; each question carries 3 marks) Marks 3 1 Design a DFA for the language for the set of strings over {a,b}* whose length is divisible by 3. 3 2 Write the applications of Finite Automata. 3 3 Write any three closure properties of regular languages. 4 Write a regular expression for the set of strings whose 5th symbol from the end is b for 3 $\sum = \{a,b\}.$ 5 3 State Myhill Nerode theorem? List the applications of Myhill Nerode Theorem. 3 6 Construct a CFG to generate a set of strings with equal number of a's and b's. 7 3 Define Deterministic Pushdown Automata. 3 8 Prove that $L = \{a^n b^n c^n \mid n \ge 1\}$ is not context free using pumping lemma of CFL. 9 Write and explain the instantaneous description of a Turing machine. 3 3 10 Define Chomsky Classification of Formal languages.

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

7

 a) Prove that "Let L be a set accepted by a Nondeterministic Finite Automaton. Then there exists a deterministic Finite Automaton that accepts L".

Page 1 of 4

1100CST301122102

b) For the following NFA find equivalent DFA and draw the transition diagram of equivalent DFA.

7

7

7

12 a) Let G={V,T,P,S} be a regular grammar where V={S,A,B}, T={0,1,+,-}, S=S

Production rules P:

S->0A | 1A

A->0A | 1A | +B | -B

B->0B | 1B | 0 | 1

Construct a Finite Automata that accepts the language generated by a given grammar G.

b) Write a grammar which generate strings containing even number of 'a' and even number of 'b' over ∑={a,b}.

Module -2

13 a) Construct a NFA accepting the language denoted by the following regular expression 4 (using Thompson's Construction method).

b(a+b)*aa

- b) i) Define ultimate periodicity. Using Ultimate periodicity check whether the language 3+7L = { $a^{n!} | n \ge 0$ } is regular or not.
 - ii) Construct a regular expression equivalent to the Finite Automata given below:

Page 2 of 4

1100CST301122102

14 a) Let M be the finite automaton as shown in the figure. Minimize the automata.

8

b) i) What are the conditions needed for pumping lemma for regular sets? 2+4 ii) Prove that $L=\{ww^R | w \text{ is the element of } \{0,1\}^* \text{ and } w^R \text{ is the reverse of } w\}$ is not

regular using pumping Lemma.

Modul	e -3
-------	------

15 a)	Consider the grammar S->aB bA A->a aS bAA B->b bS aBB For the string 'aaabbabbba' give:	6
	i) leftmost derivation	
	ii) rightmost derivation	
	iii) derivation tree	
	iv) Is the grammar ambiguous? Justify your answer.	
b)	Convert the grammar below to CNF: S->ASB ε B->SbS A bb A->aAS a	8
16 a)	Convert the following grammar to Greibach Normal Form: $A_1 \rightarrow A_2A_3$ $A_2 \rightarrow A_3A_1 \mid b$ $A_3 \rightarrow A_1A_2 \mid a$	8
b)	Remove the Useless symbols from the grammar below: S->aB aCD aE B->bC C->aB b D->aE E->bCD	6

1100CST301122102

Module -4

17	a)	Construct Push down Automata to recognize $L = \{a^n b^n c^m \mid n,m \ge 1\}$.	6
	b)	Explain two modes of language acceptability of a PDA and define instantaneous	8
		description of PDA.	
18	a)	Construct a PDA equivalent to the grammar. Check whether the grammar can generate	7
		the string 'abaaaa' which is accepted by PDA.	
		S-> aAA	
		A-> aS bS a	
	b)	i) List two CFLs which cannot be accepted by DPDA? Justify.	7
		ii) Design PDA which to recognize all palindromes over{0,1}.	
		Module -5	
19	a)	Construct a Turing Machine for the language $\{L=0^n1^n2^n n>=1\}$.	7

	b)	i) Differentiate Nondeterministic Turing machine and Deterministic Turing Machine.	
		ii) Define Multitape turing Machine.	
20	a)	Explain Universal Turing Machine.	6

b)	i) Write short note on Recursive a	nd Recursive enumerable Languages.	3+5

ii) Design a Turing Machine to add two unary integers.

Page 4 of 4