1200MRT304052304

Reg N		- 576
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	Company
	B.Tech Degree S6 (R,S) Exam April 2025 (2019 Scheme)	CAGA
	Course Code: MRT304	-
	Course Name: DIGITAL IMAGE PROCESSING & MACHINE VISION	
Max.	Marks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries 3 marks.	Marks
1	Explain the basic relationship between pixels	(3)
2	Explain Image Subtraction	(3)
3	Explain any two noise models	(3)
4	Elucidate about the principle of image enhancement using Histogram	(3)
	equalization	
5	Differentiate lossy and lossless compression	(3)
6	Define compression ratio. Explain data redundancy in detail	(3)
7	Explain Thresholding? Differentiate between single thresholding and multilevel	(3)
	thresholding	
8	Describe the image segmentation and applications of image segmentation	(3)
9	Classify machine vision systems based on their level of complexity	(3)
10	Write a short note on advantages and application of machine vision	(3)
	PART B	
	Answer any one full question from each module, each carries 14 marks.	
	Module I	
11 a) With reference to a digital image, describe the following terms	(14)
	i) Neighbour hood	

OR

Page 1of 2

ii) Adjacency

1200MRT304052304

12	a)	Elucidate about the principle of image enhancement using	(14)
		i) Histogram equalisation	
		ii) Image subtraction	
		Module II	
13	a)	Discuss image restoration process based on Minimum mean square error	(14)
		filtering	
		OR	
14	a)	Appraise the three methods for the estimation of unknown degradation function	(14)
		using blind image restoration method	
		Module III	
15	a)	Illustrate wavelet coding image with neat sketches	(7)
	b)	Illustrate LZW coding with suitable example	(7)
		OR	
16	a)	State the coding procedure used in Huffman coding with suitable example	(14)
		Module IV	
17	a)	Evaluate about chain codes approach of boundary representation	(14)
		OR	
18	a)	Evaluate on boundary descriptors	(14)
		Module V	
19	a)	Explain the components of a machine vision system	(7)
	b)	With neat sketch explain CCD camera	(7)
		OR	
20	a)	Describe machine vision. Also explain low level and high level vision.	(14)
