02000CST294062203

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

B.Tech S4 (Hons.) Degree Examination May 2025 (2023 Admn)

Course Code: CST294

Course Name: Computational Fundamentals for Machine Learning

Max. Marks: 100

Duration: 3 Hours

YERUT

Pages: 3UC

	PARTA	
	(Answer all questions; each question carries 3 marks)	Marks
1	Prove that the vectors $(1, 3, 1)$, $(2, 3, -1)$ and $(1, 2, -1)$ form a basis for R ³ .	3
2	Consider the mapping $\phi: \mathbb{R}^3 \to \mathbb{R}^4$ as $(x_1 - x_3, x_1 + x_2, x_3 - x_2, x_1 - 2x_2)$ for all $x = (x_1, x_2, x_3)$ in \mathbb{R}^3 . Then find $\phi (1, -2, 3)$.	3
3	Find the l_1 and l_2 norms of the vector $v = (-7, 2, -1)$.	3
4	Find the inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$	3
5	Determine the first, second, third and fourth derivative of $V(x) = x^3 - x^2 + x - 1$	3
6	Write any three identities involving gradients.	3
7	Two fair dice are thrown simultaneously. The probability that the sum of numbers on the dice exceeds 8 is.	3
8	Define sample space, event and random variable.	3
9	What is gradient descent with momentum? How is the next update during each iteration determined?	3
10	Explain Stochastic Gradient Descent with momentum?	3
	PART B (Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11	 a) Solve the system of equations by Gauss Elimination method. x+y+z=3 	7
	x+2y+3z=4	/
	x+4y+9z=6	
	b) Find all solution of the following system of linear equations.	
	$x_1 + 8x_3 - 4x_4 = 42$	7
12	$0x_{1+}x_{2+}2x_3+12x_4 = 8.$ a) Find Im(f) and Ker(f), when f: R ³ \rightarrow R ³ is given by f(a,b,c,d) = (a+b, b+c, a+c)	7
	b) Find a basis for row space, column space and null space of the matrix.	

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{bmatrix}$$

Module -2

7

5

9

8

3

5

7

7

- 13 a) Find the Cholesky decomposition of the matrix. $\begin{bmatrix} 25 & 15 & -5^{2} \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}$
- b) Describe Gram-Schmidt process. Ortho-normalize the basis b1=(1,1,0), b2=(1,0,1)
 14 a) Show that the set of vectors (1, 0,-1) (1,√2, 1) (1,-√2, 1) is mutually orthogonal.
 - 4 a) Show that the set of vectors (1, 0, -1) (1,√2, 1) (1,-√2, 1) is mutually orthogonal. 5 Construct Orthonormal of the vectors.
 b) E = 1 is the set of SEVD = 15 state SEVD of the set is a [4 0] 9
 - b) Explain the concept of SVD and find the SVD of the matrix $A = \begin{bmatrix} 4 & 0 \\ 3 & -5 \end{bmatrix}$

Module -3

- 15 a) What is automatic differentiation? Illustrate the same by differentiating the function $f(x) = \sqrt{x^2 + exp(x^2)} + cos(x^2 + exp(x^2))$ where "exp" denotes the exponential function. Clearly draw the computation graph and explain the working.
 - b) If $\frac{x^2}{a^2+u} + \frac{y^2}{b^2+u} + \frac{z^2}{c^2+u} = 1$ prove that, $\left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2 = 2\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + z\frac{\partial u}{\partial z}\right)$ 6

16 a) If
$$u = x \log xy$$
 where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$.

- b) Expand $e^x log(1 + y)$ in powers of x and y up to the terms of third degree.
- c) With necessary equations and illustrations, explain how gradients are computed
 6 in a deep network.

Module -4

- 17 a) The probability that a cell in a wireless system is overloaded is $\frac{1}{3}$. When the cell is overloaded the probability that a cell is blocked is 0.3. If it is not overloaded the probability that a call is blocked is 0.1. (i) If you make a call what is the probability that it is blocked? (ii) If your call is actually blocked, what is the probability that it is due to the cell being overloaded?
 - b) Let X be a random variable taking values 1, 2, 3 and 4 with probabilities 1/6, 2/6, 2/6, 1/6 respectively. Calculate the mean and variance of random variables Y = 7 2X+3.
- 18 a) The possible values of a random variable X are 0, 1, 2 and 3. If P(X=2) = 2P(X=0) = 4P(X=3) and 4P(X=1) = 3P(X=2), find the PMF and CDF of X. Also calculate P(X≠0)

02000CST294062203

b) A firm has a service contract on its copier. The firm pays a flat rate of Rs.250 each month plus Rs.50 for each service visit. Let X denote the number of repairs during a month. From experience, the firm knows that the probability distribution of X is as follows:

x	0	1	2	3
P(X = x)	0.5	0.3	0.15	0.05

- (i) What is the probability that the service cost next month would exceed Rs. 300?
- (ii) What is the average service cost per month? Module -5
- 19 a) By the method of least square find the best fitting straight line to the given data.

x	Y	
5	15	
10	19	
15	23	
20	26	
25	30	

b) Solve linear programming problem using simplex method.

Max $Z=5x_1+3x_2$ subject to the constraints:

- $x_1 + x_2 \le 2$ $5x_1 + 2x_2 \le 10$ $3x_1 + 3x_2 \le 12$ $x_1, x_2 \ge 0$
- 20 a) A manufacture of furniture makes two products, chairs and tables. Processing of these products is done on two machine A and B. A chair requires 2 hours on machine A and 6 hours on machine B. A table requires 5 hours on machine A and no time on machine B. There are 16 hours of time per day available on machine A and 30 hours on machine B. Profit gained by the manufacturer from a chair is Rs. 1 and from a table is Rs. 5 respectively. Formulate the problem a LPP in order to maximise the total project.

b) Find the maximum and minimum values of $f(x, y) = y^2 - 4x^2$ subject to $x^2 + 2y^2 = 4$ using Lagrange Multipliers Solution.

7

7

7

7

7