MAT101-12190X

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Course Code: MAT101

Course Name: LINEAR ALGEBRA AND CALCULUS

(2019-Scheme)

Max. Marks: 100

Duration: 3 Hours

RUT

PART A

	Answer all questions, each carries 3 marks.	
1	Find the rank of the matrix $\begin{bmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{bmatrix}$	(3)
2	Write down the matrix of the quadratic form $2x^2 + 5y^2 - 6z^2 - 2xy - yz + 8xz$	(3)
3	If $w = tan^{-1}(xyz)$, find the differential dw at (1,1,1).	(3)
4	Find the slope of the function $f(x, y) = y\cos(xy) + \sin(xy)$ at $(\pi, 1)$	(3)
	along the x- direction.	
	Evaluate $\int_{-1}^{2} \int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dx dy dz$	
5		(3)
6	$\iint_{R} (x \sin y - y \sin x) dA \text{ over the region}$ $R = \{(x, y), \ 0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}\}$	(3)
7	Test the convergence of the series $\sum_{k=1}^{\infty} \frac{2k+1}{(k+1)^2}$	(3)
8	Check the convergence of the series $\sum_{k=1}^{\infty} \frac{k}{2^k}$	(3)
9	Find the Taylors series for $f(x) = \sin \pi x$ about $x = \frac{1}{2}$ upto fourth degree	(3)
	Page 1 of 4	

Page 1 of 4

term.

10

Find the Fourier constant a_n for the function $f(x) = x^2$ in the (3) interval $(-\pi, \pi)$.

PART B

Answer one full question from each module, each question carries 14 marks

Module-I

a) Solve the following linear system of equations using Gauss elimination (7) method.

$$4y + 4z = 24$$

3x -11y- 2z =- 6
6x - 17y+ z = 18

b) Find the eigenvalues and eigenvectors of

$$\begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$$

12	a)	Find the matrix of transformation that diagonalize the matrix					
			$\left[-1\right]$	2	-2		
						. Also find the diagonal matrix.	
			2	1	4		

(7)

(7)

b) Find the canonical form corresponding to the quadratic form (7) $8x^2 + 7y^2 + 3z^2 - 12xy - 8yz + 4xz$. Also find the definiteness.

Module-II

13 a) Find the local linear approximation L to the function $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$ at (7)

the point P (4,3).Compare the error in approximating f by L at the point Q(3.92, 3.01).

b) Find the absolute maximum and minimum values of

MAT101-12190X

$$f(x, y) = 3xy - 6x - 3y + 7$$
 on the closed triangular region R with

vertices (0,0),(3,0),(0,5).

14 a) If
$$w = r^2 - r \tan \theta$$
, $r = \sqrt{s}$, $\theta = \pi s$ at $s = \frac{1}{4}$, evaluate $\frac{dw}{ds}$ at $s = \frac{1}{4}$. (7)

The focal length of a mirror is given by $\frac{2}{f} = \frac{1}{v} - \frac{1}{u}$. Use differentials to (7)

b) find the percentage error in f if u and v are both in error by 2% each.

Module-III

15 a) Change the order of integration and hence evaluate $\int_0^4 \int_y^4 \frac{x}{x^2 + y^2} dx dy$ (7)

- b) Find the total mass and center of gravity of the lamina with density (7) $\delta(x, y) = xy$ in the first quadrant bounded by the circle $x^2 + y^2 = 1$ and the coordinate axes.
- 16 a) Use double integral to find the volume of the solid bounded by the cylinder (7) $x^2 + y^2 = 16$ and the planes z = 0, z = 4 - x
 - b) Evaluate $\iint_R y \, dx \, dy$ over the positive quadrant of the circle (7) $x^2 + y^2 = 25$ and the line x + y = 5.

Module-IV

17 a) Find the general term of the series $1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \dots$ and use (7)

the ratio test to show that the series converges.

b) Test the absolute or conditional convergence of
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1} k^2}{k^3 + 1}$$
 (7)

18 a) Discuss the convergence of
$$\sum_{k=1}^{\infty} \frac{x^k}{k^3 + 1}$$
 (7)

b) Verify the convergence of the series $\sum_{k=0}^{\infty} \left(\frac{5^{k}+1}{3^{k}} \right)$ (7)

Module-V

19 a)	Expand the function as	(7)		
	$f(x) = x - x^2,$	-1 < x < 1		

b) Find the half range cosine series for
$$f(x) = x(\pi - x)$$
, $0 < x < \pi$. (7)

20 a) Find the Fourier series of
$$f$$
 defined by $f(x) = \begin{cases} 1+x, & -\pi < x < 0 \\ 1 & x < 0 \\ -\pi < x < \pi \end{cases}$ (7)

$$(1-x, 0 < x < \pi$$

b) Obtain Fourier sine series for the function
$$f(x) = \cos x, 0 < x < \pi$$
 (7)
