02000EET292072105

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S4 (Hons.) Degree Examination May 2025 (2023 Admin)

Course Code: EET292

Course Name: NETWORK ANALYSIS AND SYNTHESIS

Max. Marks: 100

Duration: 3 Hours

3

3

REAUT

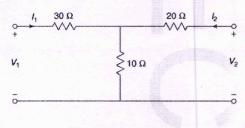
Pages: 5

VO)

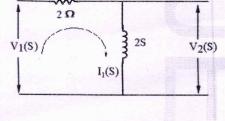
PART A

	(An	swer	all qu	estion	s; e	ach que	stion c	arries 3 mark	(S)		Marks
1	Describe Tree, Co-Tree and Twig of a graph with proper examples							3			
2	From the reduc	ed in	cidend	ce ma	atrix	given,	draw	the oriented	graph	of the	3
	$A = \begin{bmatrix} - & - \\ - & - \end{bmatrix}$	$ \begin{array}{cccc} 1 & 0 \\ -1 & -1 \\ 0 & 1 \\ 0 & 0 \end{array} $	0 1 0 -1 -	1 0 0 0 0 1 -1 -1	1 0 0 0	0 0 1 0					

- 3 What is meant by dual of a network graph to have a dual? Illustrate with an 3 example.
 - What is meant by Tellegen's theorem
 - Find the image impedances of the following two port network



6 Classify the filters based on frequency characteristics
7 List the necessary and sufficient conditions for a function to be Positive Real
3
8
3



Page 1 of 5

4

5

For the network shown in Figure 2, obtain the transfer functions $G_{21}(S)$ and $Z_{21}(S)$

Discuss the properties of LC immitance functions.

3

10

4

Determine whether following functions are RC impedance function or not. Justify your answer

9

10

(a)
$$Z(s) = \frac{3(s+2)(s+4)}{s(s+3)}$$

(b) $Z(s) = \frac{2(s+1)(s+3)}{(s+2)(s+6)}$

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

a) Find all voltages and branch currents in the network shown in Figure
 3 by node analysis, and applying network graph principles

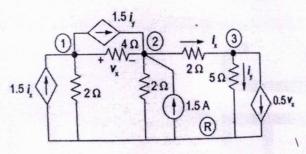
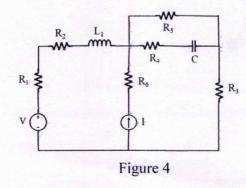


Figure 3

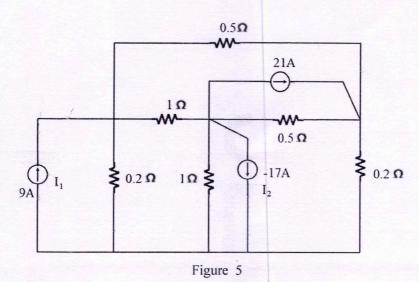
b) For the circuit shown in Figure 4 draw the oriented graph and write the tie-set matrix



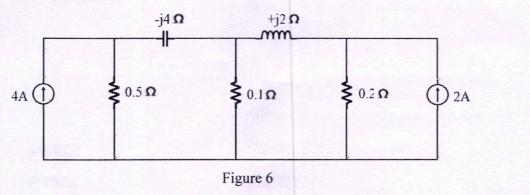
12 a)

Determine the power delivered by each current source in the circuit given in Figure 5 by nodal analysis

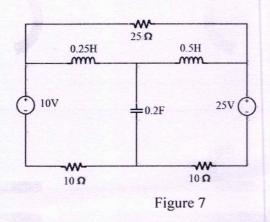
02000EET292072105



b) For the network shown in Figure 6, obtain the incidence matrix and nodal admittance matrix



- 13 a) Find the dual of the following circuits shown in Figure 7 and Figure 8 Show all intermediate steps
 - (i)



4

9

5

4

6

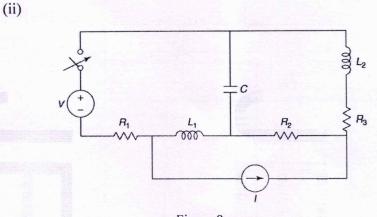


Figure 8

b) Determine the B_f matrix for a graph with reduced incidence matrix

Branches: 2 3 4 5 6 7 1 0 1 node-1 1 1 1 1 0 0 0 -1 1 -1 0 -1 0 node-2 A= 0 0 -1 node-3

Without drawing the graph. Use $\{2,3,5\}$ as twigs

14 a) For the network shown in Figure 9

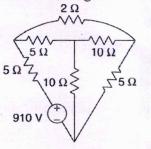


Figure 9

	a) Draw the oriented graph.	2
		2
	b)Obtain the f-cutset matrix	6
	c) Calculate the twig voltages using KCL equation for the network	
b)	Obtain the relationship between circuit matrix, tie set matrix and incidence	4
	matrix	
	Module -3	
a)	Design the T and π section of a constant K-type BPF with cut-off frequency of	

- 15 a) Design the T and π section of a constant K-type BPF with cut-off frequency of 4 kHz and 10 kHz and nominal characteristic impedance of 500 Ω.
 b) Design an m-derived pi-section low-pass filter having cut-off frequency of 1500 7
 - Hz, design impedance of 500 Ω and infinite attenuation frequency of 2000 Hz.

02000EET292072105

16	a)	1.Design the T and Pi section of constant-k high pass filter having cut-							
		frequency of 10kHz and nominal characteristic impedance $R_0 = 600 \Omega$.							
		2. Find characteristic impedances and phase constant at 25kHz.	3						
		3. Find attenuation at 5kHz and 30kHz							
	b)	Design a T-type attenuator to give an attenuation of 60 dB and characteristic	4						
		resistance of 500 Ω							
	Module -4								
17	a)	Given $I_{(S)} = \frac{3s}{(s+1)(s+3)}$. Draw the pole-zero diagram of the network function,	5						
		and hence, find time-domain response i(t).							
	b)	State the conditions to be satisfied for a Hurwitz polynomial	3						
	c)	Test whether the polynomial P(s) is Hurwitz or not	6						
		(i) $P(s) = s^3 + 4s^2 + 5s + 2$							
		(ii) $P(s) = s^4 + s^3 + 3s^2 + 2s + 12$							
18	a)	Test whether F(s) is positive real function or not	8						
		(i) $F(s) = \frac{s^3 + 6s^2 + 7s + 3}{s^2 + 2s + 1}$							
		(ii) F(s)= $\frac{s^2+4}{s^3+3s^2+3s+1}$							
	b)	Find the limits of K so that the polynomial $s^3 + 3s^2 + 2s + K$	6						
		may be Hurwitz.							
	Module -5								
19	a)	Realise the Cauer I and II forms of the following impedance function	10						
		$Z(s) = \frac{(s+2)(s+6)}{2(s+1)(s+3)}$							
	b)) Obtain the Foster I form of the RL impedance function							
		$Z(s) = \frac{s(s+4)(s+8)}{(s+1)(s+6)}$							
20		Realise the impedance function $Z(s)$ in three different ways	14						
		$Z(s) = \frac{4(s^2+1)(s^2+9)}{s(s^2+4)}$							
