0100PHT110052406

Reg No.:______ Name:______

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech S1 (S,FE) S2 (S,FE) Exam May 2025 (2019 Scheme)

Course Code: PHT110
Course Name: ENGINEERING PHYSICS B
(2019 -Scheme)

Max. Marks: 100 PART A Answer all questions, each carries 3 marks What is Q-factor of a damped harmonic oscillator? How is it related to angular (3) frequency? Differentiate between transverse and longitudinal waves with examples. (3)	
Answer all questions, each carries 3 marks What is Q-factor of a damped harmonic oscillator? How is it related to angular frequency? (3)	s
What is Q-factor of a damped harmonic oscillator? How is it related to angular (3) frequency?	.5
frequency?	
2 Differentiate between transverse and longitudinal waves with examples. (3)	
2 Billerentiate between transverse and longitudinal waves with champles.	
3 Explain the principle and working of antireflection coatings. (3)	
Define dispersive power of grating. Write its expression and explain the terms. (3)	
5 Using uncertainty theory prove that electrons are absent in atomic nucleus. (3)	
6 Briefly explain any three medical applications of nano technology (3)	
Define intensity of sound. Write the unit of intensity of sound. (3)	
8 What are the characteristics of ultrasonic waves? (3)	
9 Explain the terms population inversion and metastable level in lasers (3)	
What are the advantages of optic fibre communication system? (3)	
PART B	
Answer one full question from each module, each question carries 14 marks.	
MODULE 1	
11 (a) Derive the differential equation of a damped harmonic oscillator and obtain its (10))
solution. Mention the three different cases.	
(b) Write the differential equations for mechanical and electrical oscillators.	
Compare them with any three points.	
(4)	
12 (a) Derive the expression for velocity of transverse waves in a uniform stretched (10))
string.	
(b) Calculate the fundamental frequency of a string of 1 m long and mass 2g when it	
is stretched by suspending a mass of 4 kg at its end.	
(4))

0100PHT110052406

MODULE 2

13	(a)	Explain the formation of interference fringes in an air wedge arrangement and obtain the expression for bandwidth. Write any one use of airwedge	(10)
		arrangement.	
	(b)	arrangement.	
	(0)	In a Newton's rings experiment, the diameter of 5 th ring and 15 th ring are 0.4 cm	(4)
		and 0.6 cm respectively. If the radius of curvature of plano convex lens is 1m,	(.)
		find out the value of wavelength (λ) used.	
14	(a)	What is grating element? Derive grating equation.	(10)
	(b)		(4)
	(-)	MODULE 3	
15	(a)	Apply Schrodinger equation to derive the energy values and normalised wave	(10)
		functions for a particle confined to an infinite potential box of width L.	
	(b)		
		examples.	
			(4)
16	(a)	Write a short note on quantum confinement. Explain nano sheet, nano rod and	(10)
		quantum dot.	
	(b)	Calculate the De Broglie wavelength of a neutron having kinetic energy of 1 eV.	
		Given $h=6.62 \times 10^{-34}$ Js, $m=1.6 \times 10^{-27}$ kg	
			(4)
		MODULE 4	
17	(a)	What are the factors affects the acoustics of a building. Explain remedies.	(10)
	(1)		
	(b)	A quartz crystal of thickness 0.001 m vibrates at its resonance. Calculate the	
		fundamental frequency of the crystal. Given that young's modulus (Y) of the	(4)
1.0	()	crystal is 7.96x10 ¹⁰ N/ m ² and density (ρ) of quartz crystal is 2670 kg/m ³ .	(4)
18	(a)	With the help of a neat diagram explain how ultrasonic waves are produced by a magnetostriction oscillator.	(10)
	(b)	A cinema hall has a volume of 7500 m ³ . It is required to have a reverberation	
		time of 1.5seconds. What should be the total absorption of the hall.	
			(4)

0100PHT110052406

MODULE 5

- 19 (a) Explain the construction and working of a Ruby laser with properly labelled (10) diagram.
 - (b) Distinguish between spontaneous emission and stimulated emission (4)
- 20 (a) Explain the principle of optic fibre cable. Distinguish between step index fibre (10) and graded index fibre. Write any four applications of optic fibres.
 - (b) If an optic fibre has a core of refractive index 1.56 and cladding of refractive (4) index 1.48. Calculate numerical aperture and acceptance angle.
