47	GG.	001	12
Pages	MAET	DUCATIO	See.
lages	2/	H	1
12	II C	V	X 2
1, 1	1/	00	No.

Reg No.:_____Name:_

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S4 (R,S) (FT/WP) / (S2 PT) Examination April 2025 (2019 Scheme)

Course Code: CST 206

Course Name: OPERATING SYSTEMS

Max	x. Marks: 100 Duration: 3	Hours
	PART A	
	(Answer all questions; each question carries 3 marks)	Mark
1	Define user mode and kernel mode. Why the two modes of operations are required for the system?	3
2	Write the operations taking place during the booting of a system.	3
3	With a neat diagram, explain various states of a process.	3
4	Differentiate between Short term, Medium Term and Long term process schedulers.	3
5	What are the conditions that a solution to the critical section problem must satisfy?	3
6	What is a resource-allocation graph?	3
7	What do you mean by thrashing?	3
8	How is swapping done? Explain with the help of a diagram.	3
9	Name any three file access methods? How do they differ?	3
10	Define the terms i) Seek time ii) Rotational bandwidth iii) Disk bandwidth	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11	a) Explain various structures of the operating system with the help of neat diagrams.	10
	b) Explain the services offered by an operating system.	4

12 a) Explain any four functions of an Operating System.

8

b) Describe the purpose of system call. How do the parameter passing takes place in system call.

Module -2

13 a) Explain Inter Process Communication using a shared memory model.

6

b) Draw a Gantt chart illustrating the execution of the following processes given in 8 the table using priority scheduling algorithm (non preemptive) and also calculate the average waiting time and average turnaround time for them.

Process	Arrival Time	Burst Time	Priority
P0	0	8	5
P1	1	4	2
P2	2	1	1
P3	3	5	3
P4	4	2	4

14 a) Explain process creation in an operating system using suitable example.

6

b) Draw Gantt Chart and find the average waiting time and average turnaround time 8 for the processes given in the table below for the Round Robin CPU Scheduling algorithm. Assume time slice is 2 ms.

Process	Arrival Time	Burst Time
P1	0	5
P2	1	4
P3	2	2
P4	3	1

Module -3

15 a) Explain how semaphores can be used to solve Readers-Writers problem.

7

How can hardware instruction be used to solve critical section problem? Explain. 7

16 a) Consider the following snapshot of a s	system
--	--------

	-
LE D	
0	
	1

10

PROCESS			C		MA A	AX B (C D			VAI B	LAB C	LE D
P0	0	0	1	2	0	0	1	2	1	5	2	0
P1	1	0	0	0	1	7	5	0				
P2	1	3	5	4	2	3	5	6				
P3	0	6	3	2	0	6	5	2				
P4	0	0	1	4	0	6	5	6				

Answer the following questions using Bankers algorithm

- a. What is the content of "Need" matrix?
- b. Is the system in a safe state? Justify your answer.
- c. If a request from P1 arrives for (0 4 2 0), can the request be granted immediately
- b) Define semaphore with its operations. What are the two types of Semaphores?

Module -4

- Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 6 17 125 KB (in order), how would the first-fit and best-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)? Rank the algorithms in terms of how efficiently they use memory.
 - b) How do segmentation differ from paging?

8

- Consider the following page reference string: 5 0 5 3 5 2 5 0 1 0 7 3. 9 18 a) Given that, number of frames is 3, find how many page faults would occur for the following page replacement algorithms.
 - i) LRU replacement ii) FIFO replacement iii) Optimal replacement
 - With the help of a diagram, explain how logical address is translated into physical 5 address in paging. Illustrate with an example.

Module -5

19	a)	Explain FCFS, SSTF and SCAN disk scheduling algorithms.	9
		For the given disk queue of requests: - 98,183,37,122,14,124,65,67, find the total seek time for FCFS, SSTF and SCAN disk scheduling algorithms. Assume that	
		current position of head is at 53.	
	b)	Explain any two file allocation methods.	5
20 a)	a)	Explain Elevator algorithm for disk scheduling with an example.	6
	b)	Describe any four directory structures used in file systems.	8