0400EET426102303

C	U400EE1420102303	40
	Nome:	(ptt
Reg No.:	Name.	of Chi
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY	AGIATE AND A SECOND
	B.Tech Degree S8 (R,S) Exam April 2025 (2019 Scheme)	EX.L
		1080
	Course Code: EET426	
	Course Name: SPECIAL ELECTRIC MACHINES	
Max. N	Marks: 100 Duration: 3	Hours
	PART A	
	Answer all questions, each carries 3 marks.	Marks
1	Explain the working principle of a PMDC motor.	(3)
2	List any three applications of PMSM.	(3)
3	Explain monofilar and bifilar windings.	(3)
4	What is step angle? Derive the equation for step angle.	(3)
5	What are the advantages of Synchronous Reluctance Motors?	(3)
6	Why do we require a position sensor for the operation of an SRM?	(3)
7	List three requirements to be satisfied by a good servomotor.	(3)
8	Explain the principle of operation of an AC Servomotor.	(3)
9	What are the advantages of LIMs.	(3)
10	Explain the modifications to be done in a DC series motor so as to operate	(3)
	satisfactorily on AC supply.	
	PART B	
	Answer any one full question from each module, each carries 14 marks.	
	Module I	
11 a)	With neat diagrams, explain the principle of operation of BLDC motors. List	(10)
	three applications of BLDC motor.	
b)	Compare BLDC motor and conventional DC motor	(4)
	On	

Page 1of 2

12 a) How are permanent magnets magnetized? Differentiate axial and parallel

b) .Explain with block diagram the self-control scheme for permanent magnet

magnetizations.

synchronous motor

(6)

(8)

0400EET426102303

Module II

13	a)	Explain the construction and working of a Hybrid stepper motor.	(10)
	b)	List the advantages and applications of hybrid stepper motor.	(4)
		OR	
14	a)	Explain closed loop control of stepper motors.	(8)
	b)	Compare constructional differences between variable reluctance and permanent	(6)
		magnet stepper motors with diagram.	
		Module III	
15	a)	Derive the torque equation of a switched reluctance motor.	(7)
	b)	Explain the constructional details of a synchronous reluctance motors.	(7)
		OR	
16	a)	Explain the power converter circuit used for a Switched reluctance motor having	(7)
		bifilar windings.	
	b)	With a block diagram explain a control scheme for SRM.	(7)
		Module IV	
17	a)	Derive the transfer function of an armature-controlled DC Servomotor and	(8)
		represent it in block diagram.	
	b)	Explain the constructional features of a drag cup servomotor.	(6)
		OR	
18	a)	Compare AC and DC servomotors.	(5)
	b)	With relevant diagrams explain series split field DC Servomotors. List the	(9)
		differences between armature- controlled and field- controlled DC servomotors	
		Module V	
19	a)	Give the constructional details of universal motors. List any four applications of	(6)
		it	
	b)	Explain the construction and working of a repulsion motor	(8)
		OR	
20	a)	Classify LSMs. With the aid of necessary diagrams explain any two types of	(10)
		LSMs	
	b)	Explain the working of a hysteresis motor	(4)
