03PCECT205052501

Reg No .:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S2 (R) Examination May 2025 (2024 Scheme)

Course Code: PCECT205

Course Name: NETWORK THEORY

Max. Marks: 60

Duration: 2 hours 30 minutes

MERUT

Pages: 4

HTOY (

PART A

	(Answer all questions. Each question carries 3 marks)	со	Marks
1	State and explain Kirchoff's current law and Kirchoff's voltage law.	CO1	(3)
2	Describe about independent and dependent sources.	CO1	(3)
3	List and explain the steps involved in determining Norton's equivalent circuit.	CO2	(3)
4	State and prove maximum power transfer theorem	CO2	(3)
5	Explain the transformation of inductance and capacitance to s-domain.	CO3	(3)
6	Derive the impulse response of RL series circuit.	CO3	(3)
7	List any six properties of transfer functions.	CO4	(3)
8	Derive the expressions for transmission parameters.	CO4	(3)

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9

a) Find the current through 3Ω using mesh analysis. CO1 (5)

b) Find the node voltage V_1 using node analysis.

(4)

CO1

03PCECT205052501

10 a) Find the voltages V_1 and V_2 in the following network using node analysis. CO1 (5)

b) Determine the current through 3Ω resistor in the network shown below using CO1 (4) super mesh analysis.

Module -2

11 a) Using Thevenin's theorem, find the current through 24Ω resistor. CO2 (5)

b) Find the current through 10Ω using Millman's Theorem CO2 (4)

03PCECT205052501

12 a) Find the current through (2+j5) impedance using superposition theorem. CO2 (5)

b) Find the current I and verify reciprocity theorem for the network shown CO2 (4) below.

Module -3

13

14

a) Find the inverse Laplace transform of $F(s) = \frac{5s^2 - 15s - 11}{(s+1)(s-2)^2}$. CO3

b) The network shown in Figure has acquired steady-state with the switch CO3 (4) closed for t < 0. At t = 0, the switch is opened. Obtain i (t) for t > 0.

(5)

a) Obtain the transient current response of a series RC circuit when subjected CO3 (5) to DC input voltage 'V'.

b) Solve
$$\frac{dy}{dt} + 2y = e^{-3t}; \quad y(0) = 1$$
 CO3 (4)

Module -4

15 a) Find the driving-point admittance function of the network.

CO4 (4)

(5)

(5)

CO4

b) Draw the pole-zero diagram of I_2/I_1 for the network shown in figure. CO4

16 a) Determine hybrid parameters of the network shown below.

b) Explain the series connection of two port networks.

CO4 (4)