03PCMRT205052502

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITS B.Tech Degree S2 (R) Examination May 2025 (2024 Scheme)

Course Code: PCMRT205

Course Name: TRANSDUCERS & MEASUREMENTS

Max. Marks: 60

10

Duration: 2 hours 30 minutes

	PART A		
	(Answer all questions. Each question carries 3 marks)	CO	Marks
1	Differentiate between primary and secondary transducers with examples.	CO1	(3)
2	List the advantage of electrical transducers.	CO1	(3)
3	Explain the principle used in piezo electric transducers	CO2	(3)
4	Distinguish between resistance thermometer and thermistors.	CO2	(3)
5	How measuring instruments are classified based on nature of operation?	CO3	(3)
6	Define reproducibility and drift	CO3	(3)
7	Differentiate between AC bridges and DC bridges	CO5	(3)
8	Explain the working principle of X-Y plotter	CO4	(3)
	PART B (Answer any one full question from each module, each question carries 9 m	arks)	
	Module -1		
9	What do you mean by Pressure sensitive primary devices? Explain any one	CO1	9

What do you mean by Pressure sensitive primary devices? Explain any oneCO19of the pressure sensitive primary device with necessary diagrams

Explain the different electrical phenomena that are utilized in the operation CO1 9 of transducers. Give specific examples of transducers that employ each phenomena

Module -2

03PCMRT205052502

2 2 S

11	Describe the operating principle of an LVDT. Explain its characteristics	CO2	9
	curve and discuss its applications in displacement measurement.		
	Differentiate between analog and digital transducers. With neat diagram	CO2	9
12	explain the working of shaft encoder		
	Module -3		
13	Draw the block diagram of generalized measurement system and explain	CO3	9
	each block in detail		
	Illustrate the following	CO3	9
	i) True Value and Static error		
14	ii) Scale range and Span		
	iii) Accuracy and precision		
	Module -4		

15	Explain the general equation for bridge balance. Derive the balance	CO5	9
	condition for a Wheatstone bridge and discuss its applications		
	Explain the working principle of Digital Storage Oscilloscope. How	CO4	9
16	measurement is done using Digital Storage Oscilloscope?		

Page 2 of 2