Reg No.:_____

Name:

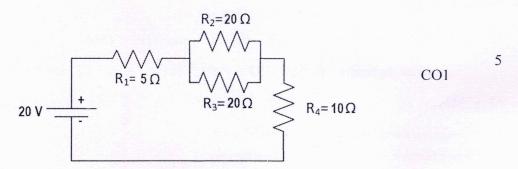
APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S2 (R) Examination May 2025 (2024 Scheme)

Course Code: GZEST204

Course Name: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

Max. Marks: 60 Duration: 2 hours 30 minutes


- Use separate answer sheets for Part 1 and Part 2
- No separate minimum marks are required to pass.

PART 1

ELECTRICAL ENGINEERING (30 Marks)

	PART 1-A		
	Module (1 & 2)		
	Answer all questions. Each question carries 3 marks	СО	Mar ks
1	State and explain Kirchhoff's laws.	CO1	3
2	Prove that for a sinusoidal voltage, RMS value is 0.707 times its maximum value.	CO1	3
3	Explain 3-phase, 3- wire and 3-phase, 4- wire AC power supply schemes.	CO2	3
4	List the different types of DC motors and state the application of each type.	CO3	3
	PART 1-B		
	Mod ule (1&2)		
	Answer any one full question from each module. Each question carries 9 n	narks	
	Module 1		
5	a) Explain the generation of AC voltage using a neat diagram.	CO1	4

b) For the circuit shown in figure, determine (i) the current drawn from the 20V source and (ii) the power dissipated in the 5 Ω resistor.

6	2)	Derive the relationship between phase and line values for voltages and	CO1	5
	a) b)	currents in a 3-phase star-connected system	COI	5
		A resistor of 10Ω and an inductor of $0.5H$ are connected in series across		
		a 230 V, 50Hz, single-phase ac supply. Determine i) Inductive reactance	CO1	4
		ii) Impedance iii) Current drawn from the supply and iv) Voltage across	COI	4
		the inductor.		

		Module 2		
7	a)	Using a neat diagram, explain the working of a Wind Energy Conversion System.	CO2	5
	b)	Distinguish between Feeder, Distributor and Service mains in a secondary distribution system.	CO2	4
8	a)	Draw a neat schematic of a Hydroelectric power plant and explain its working.	CO2	5
	b)	With a neat sketch, explain Pipe earthing.	CO2	4

PART 2 **ELECTRONICS ENGINEERING (30 Marks)** PART 2-A Module (3 & 4) Answer all questions. Each question carries 3 marks CO Mark S Find the binary equivalent of CO₄ 3 $(i) (56)_{10}$ $(ii)(102)_{10}$ CO₄ 3 2 Illustrate how the transistor works as an amplifier. CO₅ 3 3 Explain the working of Ultrasonic proximity sensors. CO 6 3 4 Define Internet of Things (IoT) and explain its significance in modern technology. PART 2-B Module (3 & 4) Answer any one full question from each module. Each question carries 9 marks Module 3 CO 4 5 5 What are the different types of capacitors? Find the value of the capacitor coded as 104. Sketch the V-I characteristics of a PN junction diode and describe its CO 4 biasing conditions. 5 6 Draw the block diagram of regulated power supply and explain each block. Explain base width modulation and its effects on the working of transistor. CO 4 4 Module 4 Explain the working of the sensor used to find the pressure of liquid or gas. CO 5 7 a) 5 Discuss the role of IoT in transforming traditional street lighting into CO₆ 4 smart street lighting. Explain the components and benefits that are associated with such a system. Explain the working of a piezoelectric accelerometer. CO₅ 5 8 With the help of a block diagram, explain the architecture of IoT. CO₆ 4