03PCCET205052501

Reg No.:____

Name:

Pages: 3 EDUCATION THE PAGE

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech Degree S2 (R) Examination May 2025 (2024 Scheme)

Course Code: PCCET205

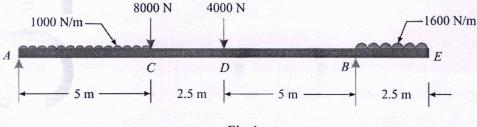
Course Name: MECHANICS OF SOLIDS

Duration: 2 hours 30 minutes

Max. Marks: 60

PART A

		(Answer all questions. Each question carries 3 marks)	CO	Marks
1		Define Factor of Safety. Calculate the working load on a cantilever beam if it	CO1	(3)
		carries an ultimate load of 200 kN with a factor of safety of 2.		
2		Define Poisson's ratio. Write the relationship between bulk modulus of	CO1	(3)
		elasticity and Young's modulus of elasticity		
3		Write the relationship between rate of loading, shear force and bending	COI	(3)
		moment.		
4		Draw shear force and bending moment diagram for a simply supported beam	CO3	(3)
		of span L carrying central concentrated load of W kN		
5		Write the equation of simple bending and state each term involved in it.	CO1	(3)
6		Explain the concept of beams of uniform strength and provide an example.	CO2	(3)
7		Define the terms: Principal stress and principal planes.	CO5	(3)
8		Define Kern of section and describe its importance.	CO2	(3)
		PART B (Answer any one full question from each module, each question carries 9 mark	ks)	
		Module -1		
9	a)	Derive an expression to determine the elongation of a uniformly tapering	CO2	(5)
		circular section under axial loading		
	b)	An axial pull of 20 kN is suddenly applied on a steel rod 2.5 m long and 1000	CO3	(4)
		mm ² in cross-section. Calculate the strain energy, which can be absorbed in the		
		rod. Take E = 200 GPa		
10	a)	A gun metal rod 20 mm diameter, screwed at the ends, passes through a steel	CO3	(9)
		tube 25 mm and 30 mm internal and external diameters respectively. The nuts		
		on the rod are screwed tightly home on the ends of the tube. Find the intensity		


03PCCET205052501

of stress in each metal, when the common temperature rises by 200°C. Take. Coefficient of expansion for steel = 6×10^{-6} /°C, Coefficient of expansion for gun metal = 10×10^{-6} /°C Modulus of elasticity for steel = 200 GPa Modulus of elasticity for gun metal = 100 GPa

Module -2

11

Analyse the overhanging beam shown in fig:1. Draw the shear force diagram a) CO3 and bending moment diagram showing all salient points including point of contraflexure.

12 A 10 m long simply supported beam carries two point loads of 10 kN and 6kN CO3 9 a) at 2m and 9m respectively from the left end. It also has a uniformly distributed load of 4kN/m run for the length between 4m and 7m from the left end. Draw shear force and bending moment diagrams. State the position and amount of maximum bending moment

Module -3

- 13 A simply supported timber beam of 4.5 m span carries a UDL of 8 kN/m and CO6 9 a) two point loads of 10 kN each at 1.5 m and 3 m respectively from right end. If the depth of beam is twice the width, design the section of beam for flexure and shear. Permissible stresses are 10N/mm² in flexure and 1N/mm² in shear. Neglect self-weight of the beam.
- 14 Determine the strain energy of a cantilever beam of span 2 m having size 20 CO3 9 a) mm width X 60 mm depth, take E= 200 GPa
 - a) When 1000 N concentrated load is placed at free end.
 - b) When total 1000 N load is distributed uniformly over the entire length.

Module -4

In a material subjected to strain, the resultant stress across a certain plane is 15 CO5 a)

7

9

03PCCET205052501

60N/mm² tensile, inclined at 30° to its normal inducing clockwise shear on the plane. The normal stress across the plane at right angles to this one is 40 N/mm² tensile. Find the magnitude of maximum shear stress and magnitude of principal stresses and locate their planes.

- b) Define slenderness ratio of a column. List any 2 limitations for Euler's CO1 2 buckling theory
- 16
- A steel rod 5 m long and of 40 mm diameter is used as a column, with one end CO4 4 fixed and the other free. Determine the Young's modulus of the material of the column if the crippling load by Euler's formula is 2.476 kN.
- b) Find the angle of twist per metre length of a hollow shaft of 10 cm external CO6 5 and 6 cm internal diameter, if the shear stress is not to exceed 35 MPa. Take G = 85 GPa.