03GYMAT201052502

Reg No .:_

Max. Marks: 60

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSIT

B.Tech Degree S2 (R) Exam May 2025 (2024 Scheme)

Course Code: GYMAT201

Course Name: MATHEMATICS FOR ELECTRICAL SCIENCE AND PHYSICAL

SCIENCE - 2

Duration: 2 hours 30 minutes

PART A

	(Answer all questions. Each question carries 3 marks)	со	Marks
1	If $f(x, y) = 4x^3y^2 + 5x - 2y$, then find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (1,2).	CO1	(3)
2	Show that $\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}$ if $f(x, y) = e^x \cos y$.	CO1	(3)
3	Evaluate $\int_{-1}^{2} \int_{0}^{3} \int_{0}^{2} xy^{2}z^{3}dzdydx$.	CO2	(3)
4	Evaluate using polar co-ordinates $\iint_R (x^2 + y^2) dA$, where R is the region	CO2	(3)
	enclosed by the circle $x^2 + y^2 = 4$.		
5	Determine whether the vector field $\vec{F} = (y^2 - 3)\hat{i} + (2xy + 5)\hat{j}$ is	CO3	(3)
	conservative.		
6	Calculate the work done by the force field $\vec{F} = \hat{\iota} - y\hat{j} + xz\hat{k}$ in moving a	CO3	(3)
	particle from (0,0,0) to (1,-1,1) along the curve $x = t, y = -t^2, z = t$		
	for $0 \le t \le 1$.		
7	State Divergence theorem.	CO4	(3)
8	Apply Green's theorem, to evaluate $\int_C \sin y dx + x(1 + \cos y) dy$ where	CO4	(3)
	C is the circular path $x^2 + y^2 = 4$ in the counterclockwise direction.		

03GYMAT201052502

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9

10

1

- a) Using chain rule, evaluate $\frac{\partial z}{\partial u}$ and $\frac{\partial z}{\partial v}$ if $z = x^2 + y^2$ where x = u + v and CO1 (4) y = u - v.
 - b) Find the local linear approximation L(x, y) to f(x, y) = xyz at CO1 (5) (1, 2, 3). Also find the error in the approximation at (1.001, 2.002, 3.003).

a) If
$$u = f(2x - 3y, 3y - 4z, 4z - 2x)$$
, then prove that $\frac{1}{2}\frac{\partial u}{\partial x} + \frac{1}{3}\frac{\partial u}{\partial y} + \frac{1}{4}\frac{\partial u}{\partial z} = 0.$ (4)

b) Locate all relative extrema and saddle points of $f(x, y) = 3x^2 - 2xy + CO_1$ (5) $y^2 - 8y$.

Module -2

11 a) Using double integrals, find the area enclosed between the parabolas $y^2 = CO2$ (4) x and $x^2 = y$.

b) Find the volume of the solid in the first octant bounded by the coordinate CO2 (5) planes and the plane 2x + y + z = 4.

- 12 a) Evaluate $\iint_R y dA$ where *R* is the region in the first quadrant enclosed CO2 (4) between the circle $x^2 + y^2 = 25$ and the line x + y = 5.
 - b) Evaluate by changing the order of integration: $\int_0^4 \int_{\sqrt{x}}^2 \sin(y^3) dy dx$. CO2 (5)

Module -3

3	a)	Evaluate \int_{C}	[(1+xy)	$dx + x^2 dy$	where $C: \vec{r}(t) =$	$= t^2 \hat{\imath} + 2t \hat{\jmath}; 0 \le t \le 1$	· CO3	(4)
---	----	---------------------	---------	---------------	-------------------------	---	-------	-----

b) Find the values of a, b, c so that $\vec{F} = (axy + bz^3)\hat{i} + (3x^2 - cz)\hat{j} + CO3$ (5) $(3xz^2 - y)\hat{k}$ is irrotational. For these values of a, b, c find the scalar potential of \vec{F} .

03GYMAT201052502

4 a) Find *div curl*
$$\vec{F}$$
, where $\vec{F} = x^2 z \hat{\imath} - 2y^3 z^2 \hat{\jmath} + xy^2 z \hat{k}$. CO3 (4)

Show that the integral $I = \int_C (y \sin x \, dx - \cos x \, dy)$ is independent of the b) CO3 (5)path. Hence evaluate the integral *I* along any path from (0, 1) to $(\pi, -1)$.

Module -4

- Use divergence theorem to find the outward flux of the vector field $\vec{F} =$ a) CO4 (4) $x^2\hat{\imath} + z\hat{\jmath} + yz\hat{k}$ across the unit cube.
 - Use Stoke's theorem to evaluate $\oint_C \vec{F} \cdot d\vec{r}$ where $\vec{F} = (2x y)\hat{\imath} yz^2\hat{\jmath} yz^2\hat{\jmath}$ b) CO4 (5) $y^2 z \hat{k}$ and C is the boundary of the surface σ which is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ oriented upwards.
 - Find the flux of the vector field $\vec{F} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ across σ , which is the a) CO4 (4)portion of the surface $z = 1 - x^2 - y^2$ that lies above the XY – plane and is oriented upwards.
 - Using Green's theorem, evaluate $\int_C (y e^x) dx + \cos x \, dy$, where C is the b) CO4 (5) boundary of a plane triangle with vertices $(0,0), (\frac{\pi}{2}, 0)$ and $(\frac{\pi}{2}, 1)$ oriented counterclockwise.

15

16