A	0400CS1402082402	16	Pages: 2
Reg No.:	Name:	3	5 201425
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERS	11 6	*
	B.Tech S8 (R, S) Exam (FT / PT) April 2025 (2019 Schen	ne)	RUTHURUTH'

Course Code: CST402

		Course Name: DISTRIBUTED COMPUTING	
Ma	x. N	Marks: 100 Duration:	3 Hours
		PART A Answer all questions, each carries 3 marks.	Marks
1		List the characteristics of distributed system.	(3)
2		Define Causal precedence relation	(3)
3		What are leader election algorithms? Name any two	(3)
4		Define logical clock	(3)
5		What are the performance evaluation metrics of a mutual exclusion algorithm?	(3)
6		List out the strategies for handling deadlocks in a distributed environment	(3)
7		State the disadvantages of distributed shared memory	(3)
8		What are checkpoints?	(3)
9		Define Byzantine agreement problem.	(3)
10		Write the features of Google File System.	(3)
		PART B Answer any one full question from each module, each carries 14 marks.	
		Module I	
11	a)	Explain the algorithmic challenges of designing a distributed system.	(7)
	b)	Compare and contrast physical and logical concurrency	(7)
		OR	
12	a)	Explain in detail about the past and future cones of an event.	(6)
	b)	Explain the applications of distributed computing	(8)
		Module II	
13	a)	What are the basic properties of scalar time?	(6)
	b)	Illustrate bully algorithm for electing a new leader.	(8)
		OR	
14	a)	Discuss in detail about chandy lamport algorithm.	(8)
	b)	Illustrate the working of spanning tree based termination detection algorithm	(6)

0400CST402082402

Module III

15	a)	Explain Lamport's algorithm for mutual exclusion	(8)
	b)	Explain in detail about deadlock handling strategies in a distributed environment	(6)
		OR	
16	a)	Explain with example, how wait-for-graphs can be used in deadlock detection.	(8)
	b)	Explain Ricart-Agrawala algorithm with example	(6)
		Module IV	
17	a)	Explain pessimistic and optimistic logging	(6)
	b)	Show Lamport's Bakery algorithm for shared memory mutual exclusion, satisfy	(8)
		the three requirements of critical section problem	
		OR	
18	a)	Differentiate consistent and inconsistent state with example.	(6)
	b)	Explain check point based rollback recovery	(8)
		Module V	
19	a)	Explain consensus algorithm for crash failures under synchronous systems.	(7)
	b)	Explain SUN -NFS Architecture	(7)
		OR	
20	a)	Explain file service architecture in detail	(8)
	b)	Discuss the requirements of a distributed file system.	(6)

Page 2of 2