03GZPHT121122401

Reg No.:_

B

Name:

APJ ABDUL'KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular Examination December 2024 (2024 Scheme)

Course Code: GZPHT121

Course Name: PHYSICS FOR PHYSICAL SCIENCE / LIFE SCIENCE

Max. Marks: 60

9

10

Duration: 2 hours 30 minutes

ENGC

Pages: 2

PART A

	(Answer all questions. Each question carries 3 marks)	СО	Marks
1	Explain stimulated emission process with the help of an energy level	COI	(3)
	diagram.		
2	Why metastable state is necessary for laser emission.	COI	(3)
3	What are the conditions required for two light beams to interference.	CO2	(3)
4	Distinguish between Fresnel diffraction and Fraunhofer diffraction.	CO2	(3)
5	Explain with a diagram the phenomenon of quantum mechanical	CO3	(3)
	tunnelling.		
6	Discuss the significance of a wave function.	CO3	(3)
7	How reverberation differ from echo in acoustics.	CO4	(3)
8	Distinguish between longitudinal and transverse waves with one example	CO4	(3)
	each.		

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

a)	With schematic and energy level diagrams, discuss the construction and	COI	(6)
	working of a Ruby laser.	•	
b)	Explain the three components required for a laser system.	COI	(3)

- a) Discuss the principle of propagation of light through an optic fiber. How a CO1 (6) step index fiber differ from a graded index fiber. Explain wave propagation through each of them.
 - b) With the help of a block diagram explain the main components of a fiber CO1 (3) optic communication system.

03GZPHT121122401

Module -2

11	a)	Explain the formation and nature of interference fringes in wedge shaped	CO2	(6)
		thin films. Discuss how air wedge is used to measure wavelength of a thin		
		wire.		
	b)	Light of wavelength 600 nm falls on an air wedge of length 7cm. if	CO2	(3)
		interference bands formed has a width 0.01 mm calculate the diameter of		
		the wire separating the glass plates.		
12	a)	Discuss how a plane transmission grating works. With necessary figure	CO2	(6)
		derive grating equation.		
	b)	Light of wavelength 550 nm falls on a plane transmission grating and the	CO2	(3)
		third order principal maxima is obtained at an angle 30° from the normal.		
		Evaluate the number of lines per meter of the grating.		
		Module -3		
13	a)	State Uncertainty principle for two pair of conjugate variables. Show that	CO3	(6)
)	electrons cannot be confined within nucleus.		
	b)	Evaluate uncertainty in velocity of an electron trapped in a box of width 0.5	CO3	(3)
	-,	nm.		
		Given mass of electron is 9.1×10^{-31} kg, Plank's constant is 6.63×10^{-34} Js		
14	a)	Derive time dependent Schrodinger equation from plane wave equation.	CO3	(6)
	b)	Explain normalization condition and write down its mathematical form.	CO3	(3)
		Module -4		
15	a)	Formulate differential equation for a transverse wave on a stretched string	CO4	(6)
		and obtain the expression for fundamental frequency of the wave.		
	b)	A string of guitar 50 cm long and has a mass 0.05gm, kept under a tension	CO4	(3)
		256N. What will be the fundamental frequency of the wave through it.		
16	a)	Explain reverberation time. Point out its significance in designing the	CO4	(6)
		acoustics of an auditorium. Write down Sabine's formula and explain		
		different terms.		
	b)	The dimension of an auditorium is 30m X 20m X 15m. If the interior	CO4	(3)
		surfaces have an average absorption coefficient 0.3, evaluate reverberation		
		time.		

Page 2 of 2

E.