03GXEST104122405

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

First Semester B.Tech Degree Regular Examination December 2024 (2024 Scheme)

Course Code: GXEST104

Course Name: INTRODUCTION TO ELECTRICAL AND ELECTRONICS ENGINEERING

Max. Marks: 60

5

Duration: 2 Hour 30 Minutes

ages

- Use separate answer sheets for Part 1 and Part 2
- No separate minimum marks are required to pass.

PART 1: ELECTRICAL ENGINEERING (30 Marks)

PART 1-A

Module (1 & 2)

		Answer all questions. Each question carries 3 marks	COM	Marks
1		Use current division rule to find current through each branch in a DC electric circuit with two resistances R_1 and R_2 in parallel and if the total current is I.	COI	3
2		Compare magnetic circuit and electric circuit.	CO2	3
3	٠	Differentiate between statically induced emf and dynamically induced emf with an example for each.	COI	3
•4		State and explain Faraday's Laws of Electromagnetic induction and Lenz's law.	COI	3
		PART 1-B		
		Module (1&2)		

Answer any one full question from each module. Each question carries 9 marks

	Module 1		
a)	Derive the expression for energy stored in a capacitor	COI	3
b)	Use star-delta transformation technique to find the equivalent resistance between A and B in the circuit shown in figure (2).	COI	6

S

03GXEST104122405

- 6 a) Derive the expression for coupling coefficient of a coupled coil with self- CO1 3 inductances L_1 and L_2 and mutual inductance M.
 - b) For the circuit shown in figure (3), Determine the branch voltages VAB, VBC and VCA CO1 6 using nodal analysis. Take D as reference node.

7 a) Derive the expression for RMS value, average value, form factor and peak factor CO1 4 of a sinusoidal voltage $v(t) = V_m \sin \omega t$ volts.

Module 2

- b) A series RLC circuit with $R = 5\Omega$, L = 0.1H and C = 5mF is supplied from a 100V, CO1 5 10Hz supply. Find the impedance, power factor, current drawn from the supply, active power, reactive power and apparent power.
- 8 a) Prove that the average power consumed in an inductance is zero if the input voltage CO1 4 is $v(t) = V_m \sin \omega t$ volts.
 - b) A 3-phase 100V, 50Hz balanced supply is connected to a balanced 3-phase RL CO3 5 load with $R = 3\Omega$ and $X_L = 4\Omega$. Find the current drawn from the supply if the load is i) star connected and ii) delta connected.

C

03GXEST104122405

PART 2: ELECTRONICS ENGINEERING (30 Marks)

PART 2-A

Module (3 & 4)

Answer all questions. Each question carries 3 marks	CO	Marks
Differentiate between active and passive electronic components with suitable examples	CO4	3
Draw the V-I characteristics of a PN junction diode and explain	CO4	3
With the help of a neat block diagram, explain the building blocks of a basic fiber optic communication system	CO5	3
Draw the block diagram of a function generator	CO6	3

1

2 3

4

PART 2-B

Module (3 & 4)

Answer any one full question from each module. Each question carries 9 marks

		Module 3		
5	a)	Explain the working of an RC coupled amplifier with a neat circuit diagram.	CO4	6
	b)	For an NPN transistor if the common base current gain is 0.99 and collector current is 20mA, Find the value of base current and emitter current?	CO4	3
6		What is a full wave rectifier? Explain the working of a full wave bridge rectifier using necessary diagrams. Write the equations for average value, rms value, ripple factor and efficiency for the same.	CO4	9
		Module 4		
7	a)	What do you mean by Amplitude Modulation and Frequency Modulation? Explain using diagrams.	CO5	6
	b)	What are Lissajous patterns in CRO? Draw the Lissajous patterns when the waveforms in two inputs are sine waves having equal frequency and 90° phase difference.	CO6	3
8	a)	Explain the principle of Global System for Mobile Communication (GSM) using block diagram	cos	6
	b)	Draw the block diagram of a digital multimeter	CO6	3

6