1200ECT322042501

Reg No .:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (R,S) / (WP), S4 (PT) Exam April 2025 (2019 Scheme)

Course Code: ECT322

Course Name: POWER ELECTRONICS

Max. Marks: 100

Duration: 3 Hours

Marks

PART A

Answer all questions, each carries 3 marks.

1	How power diodes are classified based on the Turn OFF time. Give typical Turn OFF time values for each class.	(3)
2	Draw the ideal and practical charge distribution characteristics of a power diode during Turn OFF process.	(3)
3	Draw the basic BJT base drive circuit waveform and corresponding power dissipation curves.	(3)
4	Draw a typical Turn ON snubber circuit and explain its operation	(3)
5	Explain the working of a step-up chopper.	(3)
6	Explain the significance of flux walking capacitor in full bridge buck converters	(3)
7	Draw and explain a two level inverter topology to produce an AC waveform from DC voltage.	(3)
8	Define modulation index and harmonic indices of quasi square wave PWM signal.	(3)
9	Illustrate the forward motoring and forward generation mode in DC motor drives	(3)
10	How power converters are used in electric welding?	(3)

PART B

Answer one full question from each module, each carries 14 marks.

Module I

- a) Draw the dynamic characteristics waveforms showing the Turn ON and Turn (7)
 OFF of a power MOSFET and explain the waveforms.
 - b) Show the cross-sectional structure of IGBT and explain its working as a BJT- (7) MOSFET hybrid model.

OR

- 12 a) Draw and explain the dynamic Turn ON and Turn OFF process of an IGBT (7) power device.
 - b) Explain the static characteristics of an SCR showing latching and holding (7) current.

Module II

13 a) Draw the circuit diagram of three phase full wave, controlled rectifier circuit (7)

with resistor load.

b) Draw a typical MOSFET gate drive circuit using CMOS ICs and draw its (7) typical gate drive waveform.

OR

- 14 a) Draw and explain the effect of base current magnitude in Turn ON process of a (7) power transistor.
 - b) Draw and explain any typical MOSFET drive circuit using opto-isolator (7) isolation.

Module III

- 15 a) Draw and explain a push-pull buck converter circuit explaining the 2 loops of (8) operations.
 - b) Draw the secondary side waveforms of the above push-pull converter circuit (6) and explain how demagnetisation is effectively obtained in the circuit.

OR

16 a) Explain the operation of a full bridge converter circuit using IGBTs using a (8) circuit diagram. What is the role flux walking capacitor in the circuit?

b) Draw the waveforms of the above circuit in the primary side. (6)

Module IV

17	a)	Explain how odd and even harmonics are identified in a quasi-square wave	(7)
		PWM. Write the expression for modulation index and harmonic indices.	

b) Describe the space vector representations in coplanar space. (7)

OR

18 a) With neat sketch, explain in detail, different types of PWM techniques. Narrate (14) the significance of each technique.

Module V

19	a)	Explain the operation of an induction cooker for residential applications.	(7)
	b)	Write a short note on VSI Induction motor drive.	(7)
		OR	
20	a)	Explain any two industrial applications of power electronics.	(7)
	b)	Illustrate the principle of adjustable-speed DC drive.	(7)
