0300RAT306052204

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S6 (R,S) Exam April 2025 (2019 Scheme)

Course Code: RAT306 Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

Duration: 3 Hours

Pages: 3

PART A

Answer all questions, each carries 3 marks.			
1	Check whether the signal $x(n) = \sin(5\pi n)$ is periodic or not.		
2	Distinguish between a causal and non-causal signal.		
3	State the time shifting property of continuous time fourier series.		
4	List the conditions for existence of Fourier transform.		
5	Derive the relationship between DTFT and z-transform.		
6	Find the DTFT of $x(n) = u(n)$.	(3)	
7	State the time reversal property of DFT.	(3)	
8	Find the N-point DFT of $x(n) = \delta(n)$.	(3)	
9	Explain the basic operation in DIT algorithm.	(3)	
10	Find the number of complex multiplication involved in the calculation of a 1024	(3)	
	point DFT using i) direct computation ii) radix-2 FFT algorithm.		

PART B Answer any one full question from each module, each carries 14 marks.

Module I

11 a) For the signal x(t) shown in figure. Find the following

(8)

- i) x(2t+2) and $x(\frac{1}{2}t-2)$
- ii) x(-t+2) and x(-t-2)

b) Check whether the following signals are energy or power signals.

(6)

i)
$$x(n) = \left(\frac{1}{2}\right)^n u(n)$$

ii)
$$x(t) = e^{-5t}u(t)$$

OR

- 12 a) Check the time invariance property of the following systems. (7)
 - i) $y(t) = t^2 x(t)$
 - ii) y(n) = x(n) + nx(n-2)
 - b) Check whether the following systems are Static or dynamic and Causal or non- (7) causal.

i)
$$y(n) = x(n-2) + x(n)$$

11)
$$y(t) = x(t) + x(t+1)$$

Module II

13 a) Find the CTFS representation of the signal shown in figure. (10)

b) State any four properties of CTFT.

OR

(4)

(9)

- 14 a) Find the differential equation description for the system having impulse response (7) $h(t) = (3e^{-3t} - 2e^{-2t})u(t) \text{ using Fourier transform.}$
 - b) Obtain the transfer function of the system if (7) $y(t) = u(t) + e^{-t}u(t) - e^{-3t}u(t) - e^{-4t}u(t)$ and $x(t) = e^{-2t}u(t)$ using Laplace transform.

Module III

15 a) Find the z-transform of

- i) $x(n) = \sin \omega_n u(n)$
- ii) $x(n) = \delta(n-4)$
- iii) x(n) = r(n)

0300RAT306052204

b)	Find the DTFS representation of $x(n) =$	$cos\frac{\pi}{4}n.$	(5)

OR

(10)

(4)

16 a) Find the DTFT of

i) $x(n) = 0.5^n u(n) + 2^n u(-n-1)$

- ii) $x(n) = \delta(n+3) \delta(n-3)$
- b) State four properties of Z transform

Module IV

- 17 a) Compute the 4-point DFT of the sequence given by $x(n) = \begin{cases} \frac{1}{3}, & 0 \le n \le 2\\ 0, & otherwise \end{cases}$. (10) Plot the magnitude and phase spectrum.
 - b) Obtain the circular convolution of 2 finite duration sequences (4) $x_1(n) = \{1, -1, -2, 3, -1\}$ and $x_2(n) = \{1, 2, 3\}$

OR

18 Find the output y(n) of a filter whose impulse response is h(n) = {1,1,1} and (14) input sequence x(n) = {3, -1,0,1,3,2,0,1,2,1} using
i) overlap - save method and ii) overlap - add method.

Module V

- 19 a) Compute the 8-point DFT of $x(n)=\{2,2,2,2,1,1,1,1\}$ using radix-2 DIF FFT (10) algorithm.
 - b) Draw the basic butterfly diagram for radix-2 DIT FFT and radix-2 DIF FFT. (4)
 OR
- 20 Obtain the direct form II and parallel realization for the system whose difference (14) equation is

y(n) = -0.1y(n-1) + 0.72 y(n-2) + 0.7 x(n) - 0.252 x(n-2).
