03GAPHT121122401

Reg No.:_

Max. Marks: 60

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

B.Tech Degree S1 (Challenge Course) Examination December 202

Course Code: GAPHT121

Course Name: PHYSICS FOR INFORMATION SCIENCE

Duration: 2 hours 30 minutes

		PART A		
		(Answer all questions. Each question carries 3 marks)	CO	Marks
1	e	Define Fermi level ? Show the graphical representation of Fermi energy	CO1	(3)
		with fermi function at T=0 and T>0		
2		Define critical temperature and critical magnetic field? Give their	CO1	(3)
		relation.		
3		List three properties of a well behaved wave function and give its	CO2	(3)
		physical significance.		
4		An electron has a speed of 1.05×10^4 m/s with an accuracy of 0.02% .	CO2	(3)
		Calculate the uncertainty in the position of electron?		
5		Differentiate intrinsic and extrinsic semiconductors.	CO3	(3)
6		Explain the current flow across a p-n junction when it is forward biased.	CO3	(3)
7		Distinguish between p-n junction diode and Zener diode.	CO4	(3)
8		What is the working principle of an LED? Give any two applications of	CO4	(3)
٠		LED.		

PART B

(Answer any one full question from each module, each question carries 9 marks)

Module -1

9	a)	Explain how the band theory of solids leads to the classification of solids	coi	(6)
		in to conductors, semiconductors and insulators.		
	b)	Calculate the density of donor atoms to produce an n-type material with	CO1	(3)
		0.2 Ω -m resistivity and 0.35m²V⁻¹ electron mobility?		
10	a)	Describe Meissner effect in superconductors.	CO1	(6)
		Distinguish between Type-1 and Type-11 superconductors.		
	b)	Write any three applications of superconductors?	CO1	(3)

03GAPHT121122401

Module -2

11	a)	Write the Schrodinger equation, state the boundary conditions of its	CO2	(9)
		solution and show that the energy levels are quantised for a quantum		
		particle confined to an infinite deep potential well having finite width.		
12	. a)	Frame the wave function for a particle associated with a matter wave and	CO2	(6)
		derive the time dependent Schrodinger equation.		
	b)	What voltage should be applied to an electron microscope to produce	CO2	(3)
		electrons of wavelength 0.50Å?		
		Module -3		
13	a) -	Derive the expression for density of electrons in conduction band of an	CO3	(9)
	,	intrinsic semiconductor.		
14	a)	How is a p-n junction formed? Explain the energy band diagram of a p-n	CO3	(9)
		junction.		
		Module -4		
15	a)	What is rectification? With diagrams explain full wave rectification with	CO4	(6)
		centre tap transformer and bridge circuits.		24
	b)	A load resistance of 1000 Ω is connected to a full wave rectifier having	CO4	(3)
		ideal diodes. If the applied rms voltage is 200V, calculate peak current I $_{m}$	·	
		, V_m , I_{dc} and V_{dc} .		
16	a)	Explain the construction, working and V-I characteristics of a solar cell.	CO4	(6)
•	b)	Mention two - advantages, disadvantages and applications of a solar cell.	CO4	(3)