0200ECT202122302

Reg No .:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech Degree S4 (R,S) (FT/WP) / (S2 PT) Exam April 2025 (2019 Scheme)

Course Code: ECT202

Course Name: ANALOG CIRCUITS

Max. Marks: 100

12

Duration: 3 Hours

6

Pages: 2

PART A

	(Answer all questions; each question carries 3 marks)	Marks
1	What are the applications of a low pass RC circuit ?	3
2	What is meant by lower 3 Db frequency of a high pass circuit ?	3
3	What is the significance of Miller effect on high frequency amplifiers?	3
4	Three stages of individual RC coupled amplifier having midband gain of 80 with	3
	lower cut-off frequency of 100Hz and upper cut-off frequency of 300MHz are	
	cascaded. Find the resultant gain and cut-off frequencies.	
5	Draw the small signal equivalent circuit of MOSFET.	3
6	Explain the applications of multistage amplifiers.	3
7	Draw the block diagram of voltage series and voltage shunt feedback.	3
8	What is Darlington pair. What are the main characteristics?	3
9	Why a power amplifier is always preceded by a voltage amplifier?	3
10	Differentiate between line and load regulation.	3
	PART B	
	(Answer one full question from each module, each question carries 14 marks)	
	Module -1	
11	a) Design a suitable circuit to obtain the output level clipped at $=2V$ and $-3V$ for a	6

10 V p-p sinusoidal input voltage.

b) Explain fixed bias. Derive the expressions for Q point. Why it is seldom used? 8

a) Explain the working of an RC integrator circuit for a square wave input with 8 period T. Sketch its output waveform for RC > T, RC = T and RC < T.

b) Derive the stability factor for voltage divider bias.

Module -2

Page 1 of 2

0200ECT202122302

13	a)	Derive Ri, Ro ., Ai and Av using hybrid-pi parameters for CE configuration at	10
		low and mid frequencies.	
	b)	Differentiate between AC and DC load lines	4
14	a)	Analyse BJT RC coupled amplifier in CE configuration at high frequency using	10
		hybrid π model.	
	b)	Draw the frequency response of an RC coupled amplifier.	4
		Module -3	
15	a)	Draw a CS MOSFET amplifier. With the help of small signal equivalent circuit,	10
		compute its voltage and current gains.	
	b)	Briefly explain a cascode amplifier.	4
16	a)	Explain biasing techniques used in MOSFET amplifiers.	9
	b)	What are the effects of cascading in gain and bandwidth of an amplifier?	5
		Module -4	
17	a)	Explain the working principle of Colpit oscillator. give the equation for	9
		frequency of oscillations	
	b)	State Barkhausen criteria. How it is achieved in Wien bridge oscillators?	5
18	a)	How does negative feedback affect input and output impedances in feedback	7
		amplifiers?	
	b)	Design an oscillator to obtain sinusoidal wave form of lMHz.	7
		Module -5	
19	a)	Draw and explain the working of series voltage regulator	8
	b)	What do you mean by harmonic distortion in a power amplifier? how it is	6
		reduced in a push pull amplifier circuit?	
20	a)	For a class B amplifier providing a 20-V peak signal to a 16- Ω load (speaker) and a	7
		power supply of $Vcc = 30$ V, determine the input power, output power, and circuit	
		efficiency.	
	b)	Draw the circuit and explain the working of complementary symmetry push pull	7
		amplifier	
