0200ECT204122302

Reg No.:_

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY B.Tech Degree S4 (R,S) (FT/WP/PT) Exam April 2025 (2019 Scheme)

Course Code: ECT204

Course Name: SIGNALS AND SYSTEMS

Max. Marks: 100

Duration: 3 Hours

Pages:

PART A

	(Answer all questions; each question carries 3 marks)	Marks				
1	Define Energy and Power of a signal.					
2	Determine whether the signal given is periodic or not. If periodic, determine					
	fundamental period. Given $x(n)=Sin(3n)$.					
3	Determine the Fourier transform of the signal given : $x(t) = te^{-at}u(t)$	3				
4	Give the relationship between Fourier and Laplace transform.					
5	Check whether the system described by the following equation is causal $y(n) =$	3				
	3x(n-2) + 3x(n+2)					
6	What is meant by sampling rate and sampling interval for perfect reconstruction?	3				
7	Explain any 3 properties of DTFT.	3				
8	Perform convolution of the sequences $x_1(n) = \{1, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$	3				
9	Find the unilateral z-transform of $x(n) = a^n u(n)$	3				
10	Write any 3 properties of Z transform.	3				
PADT B						

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -1

11	a)	Check the following system t	for linearity: i) y	$y(t) = 5 \sin x(t)$, ii	v(t) = 7x(t) + 5.	7
11	4)	Check the following system i	for mounty. If y	(1) 5511 A(1), 11	, y(t) / A(t) · J.	'

- b) Determine which of the following signals are periodic. If the signal is periodic, 7 find the fundamental period: i) $x(t) = 8\sin(400 \pi t)$ ii) $x(t) = 5 + t^2$.
- 12 a) Check whether the system described by the equation $F[x(n)] = a[x(n)]^2 + bx(n)$ is 7 linear and time-invariant.

0200ECT204122302

b) Check whether the following systems are stable or not i) $y(n) = \cos x(n)$ ii) y(n) = 7 $\sum_{k=-\infty}^{n+1} x(k)$.

Module -2

13	a)	A discrete time signal $x(n)$ is given as $x(n) = a^n u(-n + 1)$, <i>obtainDTFT</i> .	7
	b)	State and prove Parseval's theorem.	7
14	a)	Evaluate the Laplace transform of $x(t) = e^{at}u(t)$ and plot ROC.	7
	b)	Determine the Laplace transforms of the following sinusoidal function $x(t) = A$	7
		$\cos \omega t u(t)$.	

Module -3

- 15 Determine the steady state response of the following system to unit step excitation: 14 $H(s) = \frac{s+1}{s^2+3s+2}.$
- 16 a) A continuous-time LTI system is initially relaxed and is represented by the 14 equation y''(t) + 3y'(t) + 2y(t) = 2x(t). Determine transfer function of the system and determine impulse response of the system.

Module -4

- 17 a) Explain the 4 properties of DTFS.10
 - b) Explain aliasing. How can it be avoided?
- 18 a) Find the frequency response H(e^{jw}) and impulse response h(n) of a causal discrete- 14 time LTI system which is characterised by the difference equation given as y(n) A y(n-1) = x(n).

Module -5

- 19 a) A discrete time signal is expressed as $x(n) = \delta(n+1) + 4\delta(n) + 2\delta(n-3) 2\delta(n-4)$. 7 Find its z- transform.
 - b) Evaluate the z-transform of the following signal $x(n) = \left(\frac{1}{2}\right)^n u(n)$. 7
- 20 a) Consider a causal LTI system with x(n) as input and output y(n) are related by the 7 difference equation $y(n) = \frac{1}{2}y[n-1] + x(n)$. Determine y(n) if x(n) = $\delta(n-1)$.
 - b) Find the z-transform and ROC of the signal $x(n) = [2(3^n) 3(4^n)] u(n)$.

7

4