F

1100MRT308062303

Reg 1	No.:				Name		 * 	May Color					
		APJ ABDUL	KA	LAM TECHNOLO	GIC	AL UNIVERSIT	Y\\c	AMOUN LIGHT					
		B.Tech Degree So	5 (S,	FE) Examination De	ceml	per 2024 (2019 Sch	neme)	RUTHURUTH					
								A. S.					
				Course Code: MI			T Z						
			me:	COMPREHENSI	VE (COURSE WOR	K	Duration: 1Hou					
Max. M	larks:												
Instructi	ons:			one mark. No negativ	e ma	rks for wrong answ	ers						
		(2) Total number of (3) All questions are	ques. to be	uons: 50 e answered. Each qu <mark>e</mark> s	tion	will be followed by	possil	ble answers of					
		which only ONE is o	orre	ct.									
		(4) If more than one	opti	on is chosen, it will no	t be c	onsidered for valua	tion.						
		DG	•••	-1istanas aan ba it	aoron	sed by							
1.	In a			al resistance can be in			77	Decreasing its					
	a)	Increasing its field resistance		decreasing its field resistance		speed	d)	Decreasing its speed					
2.	lf a	DC motor is connec		across the AC supply			/L	Dum due to hoo					
	a)	Run at normal speed	b)	Not run	c)	Run at lower speed	d)	Burn due to hear produced in the field winding by eddy currents					
3.	Dir	Direction of rotation of motor is determined by											
	a)	Faraday's law		Lenz's law		Coulomb's law	ŕ	Fleming's left hand rule					
- 4.	The	The current drawn by the armature of a DC motor is directly proportional to											
	a)	Torque	b)	Speed	c)	The voltage across the terminals	d)	Cannot be determined					
5.	Wh	nat is the working pr	incip	le of a transformer?									
4	a)	Transformer works on the principle of self-induction	b)	works on the principle of mutual induction	c)	Transformer works on the principle of ampere law	d)	Transformer works on the principle of coulomb law					
6.	An	ideal transformer w	ill h	ave maximum efficie	ncy a	at a load such that		-					
	a)	Copper loss > iron loss	b)	determined	c)	Copper loss = iron loss	d)	Copper loss <iron loss<="" td=""></iron>					
7.	Th	e stator core of a 3-p	hase	e induction motor is l	amin	ated in order to re-	duce th						
	a)	Eddy current loss	b)	Hysteresis loss	c)	Both eddy	d)	Weight of the stator					

hysteresis losses

8.	Single phase induction	moto	usually operates on		·						
	logging		0.8 power factor lagging		leading		ractor				
9.	The ripple voltage of a drawing 50mA is		vave rectifier with a 1	00 μ	F filter capacitor of	connec	cted to a load				
	a) 2.4 kV	-	4.8 kV	NAMES AND ADDRESS OF	1.2 kV	d)	6.6 KV				
10.	Two alternators are to both?	be put	in parallel. Which o	f the	following factors s	should					
	a) Frequency	b)	Phase sequence	c)	Voltage	d)	All of the above				
11 .	In an npn transistor op	eratin	g in saturated mode,	the o	utput voltage V _{CE} i	is					
N	a) Greater than $2V_{BE}$	b)	Between $2V_{BE}$ and V_{BE}	c)	Less than V_{BE}	d)	Equal to V_{BE}				
12	JFET is a										
	a) Voltage controlled device	;	Current controlled device	c)	Two terminal device	d)	None of these				
13	Input stage of a power					15	N				
	a) First op-amp		Beginning stage	,	Front end	d)	Normal stage				
14	Which of the following	g is n	ot an example of non								
1.5	a) Sawtooth generatorRelaxation oscillators	- 1	Blocking oscillator	c)	Multivibrator	d)	Crystal oscillato				
15	a) Multivibrators	b)	Phase shift oscillators	ĺ	Blocking oscillators	d)	Sawtooth generator				
16	Which of the following statement is not true for an ideal operational amplifier?										
	a) The input curren is zero			c)		d)	Gain is infinite				
17	A monostable multivibrator has $R=120 \text{ K}\Omega$ and the time delay $T=1000 \text{ms}$. Calculate the value of C.										
	a) 0.9 μF	b)	1.32 μF	c)	7.57 μF	d)	2.49 μF				
18	Invalid BCD can be made to valid BCD by adding with										
	a) 0101	b)	0110	c)	0111	d)	1001				
19	A positive edge trigg	ered [flipflop will store 1	whe	n						
	a) D is high, clock changes from low to high		D is high, clock changes from high to low		is low		D is high, clock is high				
20	For a design of 16:1						2				
	a) 1	b`	3	c)	4	d)	2				

21	Whi	ich of the following	g is a	type of solid-state se	ensor'	?						
	a)	Thermocouple	b)	Accelerometer	c)	Hall effect	d)	Light-dependent				
						sensor		resistor (LDR)				
22	Whi	ch of the following	g best	t describes the Coanc	da eff	ect?						
	a)	The ability of a	b)	The tendency of a	c)	The adherence	d)	The resistance of				
		fluid to flow		fluid to spread out		of a fluid stream		a fluid to flow				
		through a narrow		evenly in all		to a nearby		due to its				
		opening.		directions.		curved surface		viscosity.				
23	Whi	ch of the following	g is a	type of fluidic senso	r usec	I for measuring pre	ssure	?				
	a)	Thermocouple		Accelerometer		Hall effect	d)	Piezoresistive				
						sensor		sensor				
24	What type of actuator is commonly used to provide rotational motion in robotic systems and industrial machinery?											
	a)	Linear actuator	b)	Pneumatic	c)	Servo motor	d)	Gear motor				
				cylinder								
25	Which feedback device is used to measure linear displacement by converting it into an electrical signal?											
	a)	LVDT	b)	Accelerometer	c)	Fiber optic	d)	Hall effect				
						sensor		sensor				
26	Which of the following statements is true about stepper motors?											
	a)	Stepper motors	b)	Stepper motors are	c)	Stepper motors	d)	Stepper motors				
•		operate on the		only used for	**	require feedback		rotate in discrete				
		principle of		linear motion.		for precise		steps or				
		electromagnetic				positioning.		increments.				
		induction.										
27	1)res 2)res 3)it c Whice	olver is an internal	state ilable ncrem emer	AC signal into digit iental encoder	•		d)	1,2 and 3				
28	180			ity, CNC system can	,		α)	1,2 unu J				
		CAD/CAM				FMS	4)	All of these				

29	Car	n an encoder be a tra	ansdu	cer?								
	,	Yes	,	No		May or may not be	/	Both are not even related slightly				
30	What should be the acceleration of a rigid body of mass 5Kg, if a force sensor measures a normal collision impact force of 15N? (Ignore acceleration due to gravity)											
	a)	5 m/s^2	b)	13 m/s ²	c)	6 m/s²	a)	3 m/s^2				
31	Accumulator has data FFH. Determine the state of CY, Z and S flag when: 1) 01H is added 2) The content of accumulator is incremented											
	2) T a)	CY=0, S=0, Z=1 CY=1, S=1, Z=0	mulate b)	CY=1, S=0, Z=1 CY=same as previous state, S=0, Z=1	c)	CY=0, S=0, Z=0 CY= same as previous state, S=1, Z=1	d)	CY=1, S=0, Z=0 CY=1, S=0, Z=0				
32	Wh	at is SIM?										
	a)	Select Interrupt Mask		Sorting Interrupt Mask		Set Interrupt Mask	d)	Set Interrupt Mode				
33	Wh	nich of the following	g is a	two byte instruction i	n 80							
	a)	MOV	b)	CMA	c)	ADD	d)	MVI				
34	Wł	nat is the restart add	ress c	of TRAP interrupt?								
	a)	002CH	,	0024H	c)	0034H	d)	003cH				
35	All the functions of the ports of 8255 are achieved by programming the bits of an internal											
	a)	gister called Data bus control	b)	Read logic control		Control word register	d)	None of the mentioned				
36	Th	The directory that is under work must have the files that are related to										
	a)	Norton's editor	b)	Assembler	c)	Linker	d)	All of the mentioned				
37	The 8051 microcontrollers can handle interrupt sources.											
	a)	3	b)	4	c)	6	d)	5				
38	W	hen 8051 wakes up	, then	0x00 is loaded to wh	ich r	egister?						
	a)	A		PSW	c)		d)	Accumulator				
39	M	OV A, @R7 will:					18	Counths				
	a)	accumulator	b)	accumulator to the R7		contents of memory whose address is in R7 to the accumulator	d)	Copy the accumulator to the contents of memory whose address is in R7				
40	T	he higher and lower	byte	s of a 16 bit register I	OPTE	R are represented re	espect	ively as:				
	a)		b		c)	IDDI	d)	HDP and LDP				

41	If the poles of a system lie on the imaginary axis, the system will be												
41	If th	ne poles of a system	lie o	n the imaginary axis,	the s	system will be							
	a)	Stable	b)	 Conditionally stable 	c)	Marginally stable	d)	Unstable					
42	Add	dition of zeros in a tr	ansf	er function causes									
	a)	Lead compensation	b)	Lag compensation	c)	Lead-lag compensation	d)	None of these					
43	For	For which systems are the signal flow graphs applicable?											
	a)	Causal	b)	Invertible	c)	Linear time invariant	d)	Dynamic					
44	valuis	ue of 1.264 units at t	=10	to a first order system mins., and 2 units at	stead	hout time delay. The y state. The transfe	r fund	ction of the system					
×	a)	3/(1+600s)	b)	2/(1+500s)	c)	5/(1+220s)	d)	2/(1+600s)					
45	Cor	nment about the dan	npin	g of the system repres	sente	d by $G(s)=9/(s^2 +$	6s +	9)					
	a)	Undamped	b)	Underdamped	c)	Critically damped	d)	Overdamped					
46	For	the open loop trans	fer fu	Inction G(S)=1/s(s+2)), the		is eq	ual to:					
	a)	0	b)	1	c)	2	d)	∞					
47		nsider the loop trans	fer fi	unction K(s+6)/(s+3)	(s+5)	. In the root locus of	liagra	m the centroid					
		-4	b)	-1	c)	-2	d)	-3					
48	Wh	at is the number of t	he ro	oot locus segments w	hich	do not terminate or	zero	s?					
	a)	The number of poles	b)	The number of zeros	c)	The difference between the number of poles and zeros	d)	The sum of number of poles and zeros					
49		n bode a magnitude puencies by a 3 rd ord		which one of the follo	owin		exhibi	ited at higher					
	a)	•		60 dB/decade	c)	-30 dB/decade	d)	30 dB/decade					
50	The	step error coefficie	nt of	a system G(s)=1/(s+	2)(s+	-3)with unity feedba	ack is						
4.	a)	0	b)	00	c)	1	d)	1/6					